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Abstract 

Background Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope 
from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating 
and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP 
to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-
resolved database searching.

Results In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment 
quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, 
and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification 
on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 
50 atom%, and 99 atom% 13C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially 
in samples with ≥ 5 atom% 13C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 
and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher 
sensitivity for the detection of labeled proteins in two 13C-SIP experiments on a real-world soil community. The 
labeled proteins were used to trace 13C from 13C-methanol and 13C-labeled plant exudates to the consuming soil 
microorganisms and their newly synthesized proteins.

Conclusion Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost 
of SIP database searching, which will make proteomic SIP more useful and accessible to the border community.

Introduction
Stable isotope probing (SIP) is a molecular method to 
identify which microorganisms within a complex com-
munity are actively assimilating a specific substrate 
labeled with a stable isotope such as 13C, 15N, or 2H. It has 
been used to study the biomass decomposition processes 
in a variety of ecosystems, such as digestion of dietary 
nutrients by the mouse gut microbiome [1], degradation 
of lignocellulose by soil microorganisms [2], cycling of 
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phytoplankton exudates by marine microbial communi-
ties [3]. SIP has also been used to identify the microbial 
guilds involved in the degradation of specific chemical 
compounds, including polybutylene succinate [4], aro-
matic hydrocarbon [5], polyvinyl chloride [6], and anti-
biotics [7]. Furthermore, SIP has been used to investigate 
the general metabolism of microbial communities, such 
as the slow-growing microbiomes in marine methane 
seep habitats [8] and the grassland microbial communi-
ties in warming and drought conditions [9].

A variety of SIP methods have been developed to trace 
a stable isotope from a labeled substrate into the biomass 
of microorganisms that have assimilated the substrate. 
Nucleic acid SIP (DNA- and RNA-SIP) involves the iso-
lation of isotopically enriched DNAs or RNAs from 
SIP-labeled microorganisms using density-gradient ultra-
centrifugation [10, 11]. Sequencing of these nucleic acids 
can reveal the precise taxonomic structure and functional 
potential of the SIP-labeled microorganisms. Nucleic 
acid SIP is a commonly used SIP method owing to the 
wide availability of ultracentrifugation and sequencing. 
However, ultracentrifugation requires significant isotopic 
enrichment to separate out labeled nucleic acids, which 
necessitates high amounts of substrate addition and rela-
tively long incubation times. The resulting fractions do 
not provide an accurate measurement of the enrichment 
levels of the extracted nucleic acids [12].

The isotopic labeling of phospholipid-derived fatty 
acids (PLFA) in microbial communities can be measured 
using gas chromatography-mass spectrometry (GC–MS) 
in a PLFA-SIP approach [13]. Unlike DNA- or RNA-SIP, 
the enrichment levels of PLFAs may be accurately quan-
tified by mass spectrometry. However, labeled PLFAs 
can only be linked to very broad taxonomical categories 
of organisms, such as Gram-negative/positive bacteria, 
actinomycetes, and fungi [14]. This limitation prevents 
PLFA-SIP from identifying the precise microbial lineages 
labeled by SIP.

Labeled proteins in a microbial community provide an 
alternative target for SIP analysis. The first protein-based 
SIP is based on two-dimensional gel electrophoresis of an 
SIP-labeled proteome and a parallel unlabeled proteome 
[15]. Labeled protein spots are identified via the corre-
sponding unlabeled protein spots on the same positions. 
Then, the enrichment levels of the labeled proteins were 
quantified based on the isotopic envelopes of their identi-
fied peptides. To take advantage of the higher through-
put of shotgun proteomics, we subsequently developed a 
proteomic SIP approach [16] that can identify thousands 
of labeled proteins analyzed by liquid chromatography-
tandem mass spectrometry (LC–MS/MS). Proteomic SIP 
uses enrichment-resolved database searching provided 
by the Sipros algorithm to identify peptide-spectrum 

matches (PSMs) and quantify their enrichment levels. 
Sipros-based proteomic SIP has been used to trace 15N 
and 2H in the acid mine drainage communities [17], 15N 
in the marine sediment communities [8], and 13C in the 
marine communities [3, 18]. These studies demonstrated 
some technical advantages of proteomic SIP over other 
SIP methods, including sensitive detection of labeled 
proteins at low abundance with low isotopic incorpora-
tion levels and accurate quantification of their enrich-
ment levels. The labeled proteins can not only identify 
their source organisms with high taxonomic resolution 
but also reveal the de novo protein synthesis activities 
in these organisms during the assimilation of a given 
substrate.

However, our recent 13C SIP study of the soil commu-
nities [19] highlighted the high computational cost of SIP 
searches by Sipros 3 and the difficulty of finding labeled 
peptides from extremely complex communities. In this 
study, we upgraded the Sipros algorithm to overcome 
these two challenges. Sipros 4 was > 20-fold faster than 
Sipros 3 and identified more labeled proteins from SIP 
samples. Furthermore, we compared Sipros 4 with two 
other algorithms that can also be used for proteomics 
SIP, Calisp [20] and MetaProSIP [21]. The performances 
of these algorithms were benchmarked using standard 
13C-labeled E. coli cultures with known enrichment levels 
and real-world 13C SIP soil communities.

Results
Validation of the proteomic SIP performance using 
standard E. coli proteomes
Peptides collected from triplicate E. coli cultures grown 
under 13C-SIP labeling conditions at six pre-defined 
atom% levels (i.e., 1.07 atom%, 2 atom%, 5 atom%, 25 
atom%, 50 atom%, and 99 atom% 13C) were analyzed 
with liquid chromatography-tandem mass spectrometry 
(LC–MS/MS), which produced an average of 133,698 
MS2 scans for each pre-defined atom% level. Sipros was 
used to compare each observed MS/MS spectrum with 
the theoretical MS/MS spectra predicted for each can-
didate peptide at the enrichment levels from 0 atom% 
13C to 100 atom% 13C at 1% increments. The candidate 
peptides were generated by in silico digestion of protein 
sequences from the annotated E. coli genome. The best 
peptide-spectrum match (PSM) for an observed MS/MS 
spectrum identified both the peptide and its enrichment 
level.

Figure  1 shows the changes in the isotopic distribu-
tions of both the precursor and fragment ions of an 
illustrative peptide when its 13C level was enriched 
from the natural 1.07 atom% to 50 atom%. The higher 
13C enrichment shifted and broadened the isotopic 
envelopes of not only the precursor ion in the MS1 
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scans but also the fragment ions in the MS2 scans. The 
50-atom% 13C-labeled E. coli proteome was measured 
by LC–MS/MS at the five isolation window widths of 
0.8, 1.5, 3.0, 5.0, and 7.0 Da. The 5-Da-wide isolation 
window produced the most peptide and protein iden-
tifications (Supplementary Table S1) and, therefore, 

was used to measure all the other standard E. coli 
proteomes.

The 13C atom% estimates for PSMs identified by Sipros 
4 from the standard E. coli proteomes showed strong 
concordance with their expected 13C enrichment levels 
(Fig.  2 and Supplementary Table S2). The median 13C 

Fig. 1 MS/MS measurement of a peptide’s unlabeled isotopologue with 1.07 atom% 13C and its labeled isotopologue with 50 atom% 13C. The 
MS1 scans (two upper panels) and the MS2 scans (two lower panels) are shown for the unlabeled isotopologue (two left panels) and the 50% 
13C-labeled isotopologue (two right panels) of the peptide GITINTSHVEYDTPTR. Each panel shows both the observed spectrum (upper half ) 
and the theoretical spectrum (lower half ). The 13C labeling increased the m/z values and widened the isotopic envelopes of both the precursor ions 
in the MS1 scans and the product ions in the MS2 scans. The fragmentation pattern of the peptide was similar between its two isotopologues

Fig. 2 Accuracy and precision of 13C atom% quantification by Sipros 4 on the PSM level for standard E. coli samples. The atom% estimates for all 
PSMs identified by Sipros 4 in each E. coli proteome are shown in its corresponding histogram with 1-atom% bin width. The medians of the atom% 
histograms are exactly aligned to their expected atom% values marked by the red vertical line, which indicates accurate 13C atom% quantification 
by Sipros 4 across the full range of 13C enrichment levels. The dispersion of the atom% histograms measures the precision of 13C atom% 
quantification, which decreases gradually from the unlabeled sample to the 50% 13C-labeled sample and then increases in the 99% 13C-labeled 
sample. The size of atom% histograms reflects the number of identified PSMs, which ranges from 26,583 PSMs in the 99% 13C-labeled sample 
to 64,113 PSMs in the unlabeled sample
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atom% of the identified PSMs in all samples was equal to 
the expected 13C atom% from 1 to 99% 13C. This indicated 
accurate atom% quantification across the full range of 13C 
enrichment levels. The precision of atom% quantification 
decreased as the enrichment levels moved toward the 50 
atom% 13C enrichment from the two ends (Fig. 2). Sipros 
4 identified and enrichment-quantified 64,113 PSMs in 
the 1.07-atom% samples, 65,131 PSMs in the 2-atom% 
samples, 46,665 PSMs in the 5-atom% samples, 43,526 
PSMs in the 25-atom% samples, 37,659 PSMs in the 
50-atom% samples, and 26,583 PSMs in the 99-atom% 
samples. This indicated deep coverages of the labeled 
proteomes across the entire atom% range by Sipros 4.

Comparison of the proteomic SIP performance using 
standard E. coli samples
Sipros 4 was compared with Sipros 3, Calisp, and 
MetaProSIP using the standard E. coli samples (Table 1). 
Because Calisp and MetaProSIP do not provide results 
at the PSM level, the performances of the four algo-
rithms were compared at the peptide and protein levels. 

The comparisons used the three performance metrics 
described above, including atom% medians for quantifi-
cation accuracy, atom% MADs for quantification preci-
sion, and identification counts for proteome coverage. 
Calisp, which needs peptides to be identified by Pro-
teome Discoverer before quantifying their atom%, failed 
to function for the samples with 25 atom%, 50 atom% and 
99 atom% 13C because Proteome Discoverer was unable 
to identify any protein in these samples (Supplementary 
Table S3) In comparison, Sipros 4 identified 973 proteins/
protein groups with 25 atom% 13C, 893 proteins/protein 
groups with 50 atom% 13C, and 1493 proteins/protein 
groups with 99 atom% 13C. Moreover, Sipros 4 identified 
significantly more proteins/protein groups than Calisp in 
the 5%- and 2%-labeled samples and the unlabeled sam-
ples. Sipros 4 also identified higher numbers of proteins/
protein groups than MetaProSIP in all samples (Table 1). 
The overlaps among the proteins identified by the three 
tools in these samples are shown in Supplementary Fig-
ure S1.

Table 1 Comparison of Sipros 3, Sipros 4, Calisp, and MetaproSIP on E. coli standard samples

a NA data is not available because database searching failed to produce any identification
b MAD median absolute deviation
c FDRs at the peptide level and the protein level were controlled at 1%

Expected 13C atom% 1.07% 13C 2% 13C 5% 13C 25% 13C 50% 13C 99% 13C

Peptidesc Median of 13C atom% Sipros 4 1.1% 2.0% 5.0% 25.0% 50.0% 99.0%

Sipros 3 1.0% 1.0% 1.0% 25.0% 51.0% 99.0%

Calisp 1.1% 2.0% 4.9% NAa NA NA

MetaProSIP 0.8% 1.2% 5.3% 10.2% 11.8% 97.7%

MADb of 13C atom% Sipros 4 0.0% 0.0% 1.5% 1.5% 3.0% 0.0%

Sipros 3 0.0% 0.0% 0.0% 4.4% 5.2% 0.0%

Calisp 1.2% 1.3% 1.5% NA NA NA

MetaProSIP 0.3% 0.1% 2.7% 5.7% 7.6% 1.0%

Count Sipros 4 18,147 14,523 11,297 8188 7275 9901

Sipros 3 18,003 14,824 12,420 5478 2218 10,042

Calisp 5259 6936 6137 NA NA NA

MetaProSIP 11,695 10,131 5,741 1003 730 85

Proteins/protein  groupsc Median of 13C atom% Sipros 4 1.1% 2.0% 5.0% 25.0% 50.0% 99.0%

Sipros 3 1.0% 1.0% 1.0% 25.0% 51.0% 99.0%

Calisp 1.1% 2.0% 4.9% NA NA NA

MetaProSIP 0.8% 1.1% 2.1% 9.8% 11.2% 97.7%

MADb of 13C atom% Sipros 4 0.0% 0.0% 0.0% 1.5% 1.5% 0.0%

Sipros 3 0.0% 0.0% 0.0% 1.5% 3.0% 0.0%

Calisp 1.2% 1.3% 1.5% NA NA NA

MetaProSIP 0.1% 0.1% 1.5% 4.7% 6.2% 0.9%

Count Sipros 4 1815 1458 1210 973 893 1490

Sipros 3 1834 1546 1428 871 476 1491

Calisp 723 1105 973 NA NA NA

MetaProSIP 1592 1429 1202 549 466 59
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Calisp produced accurate atom% medians in the 
three samples that it functioned with 1.07 atom%, 2 
atom%, and 5 atom% 13C. MetaProSIP severely under-
estimated the atom% of proteins in the four samples 
other than the unlabeled and 99% 13C-labeled samples. 
The median atom% estimated by Sipros 4 were exactly 
aligned with the expected values in all six samples. 
Furthermore, the MAD of atom% estimates by Sipros 4 
was lower than Calisp and MetaProSIP across all sam-
ples. This indicates that Sipros 4 excelled in quantify-
ing the enrichment values across the full enrichment 
range.

Sipros 4 outperformed Sipros 3 in atom% quantifica-
tion accuracy for the 2-atom% and 5-atom% 13C-labeled 
samples, as well as in the atom% precision and the 
proteome coverage for the 50-atom% sample. Nota-
bly, Sipros 4 identified approximately 2 and 4 times 
more PSMs than Sipros 3 at 25 atom% and 50 atom% 
13C, respectively (Supplementary Table S2). The perfor-
mance of Sipros 4 and Sipros 3 was also benchmarked 
using the previously analyzed 15N-labeled standards 
from the acid mine drainage biofilm community [22] 
(Supplementary Table S4). Sipros 4 identified 63% more 
PSMs than Sipros 3 in the 50-atom% 15N-labeled sam-
ple and the two algorithms performed similarly in the 
unlabeled sample and 98-atom% 15N-labeled sample.

In addition, Sipros 4 was tested using a 15N-labeled 
spiked mouse gut microbiome sample that was meas-
ured using low-resolution MS2 in an ion trap mass 
analyzer [23]. In the previous study, 5,945 15N-labeled 
peptides were identified at 0.1 FDR using MetaProSIP 
[23]. Here, Sipros 4 identified 7,439 15N-labeled pep-
tides at 0.1 FDR and 3877 15N-labeled peptides at 0.01 
FDR (Supplementary Table S5). This dataset validated 
the performance of Sipros 4 using a spiked gut micro-
biome, although optimum identification results from 
Sipros 4 required high-resolution MS2 using a 5-Da 
isolation window.

The code optimization for Sipros 4 increased the 
computational efficiency of the enrichment-resolved 
database searching. We benchmarked the wall-clock 
time used by Sipros 4, Sipros 3, Calisp, and MetaPro-
SIP for processing the standard E. coli datasets. All 
algorithms were run on the same computer server with 
24 CPU cores. Sipros 4 used ~ 0.5 h and Sipros 3 used 
more than 12 h to search the MS/MS datasets at each 
atom% level (Supplementary Table S2). The search 
time of the same datasets with Calisp included ~ 2.5 h 
used by Proteome Discoverer for protein identification 
and ~ 0.5 h used by Calisp for 13C atom% quantification. 
The search time with MetaProSIP included ~ 0.5 h con-
sumed by Comet for protein identification and a few 
minutes consumed by MetaProSIP itself for 13C atom% 

quantification. Thus, the upgrade of Sipros to version 4 
reduced its computational cost to be on par with Calisp 
and MetaProSIP.

Comparison of the proteomic SIP performance using 13C 
SIP soil communities
The performance of the four algorithms was bench-
marked using a set of soil community samples analyzed 
in a previous SIP study where either 13C-methanol or 
13CO2 was used as the labeling substrate [19]. These 
samples were chosen to test the performance of each 
algorithm on much more complex and diverse metapro-
teomes than the standard E. coli proteomes analyzed 
above. For each soil SIP experiment, the number of 
13C-labeled identifications was summarized at the PSM 
level when available, the peptide level, and the protein 
level (Table  2). The initial soil samples collected prior 
to 13C-incubation should not contain any 13C-labeled 
protein and, thus, can be used as a negative control in 
which any 13C-labeled identifications should be consid-
ered as false positives. The four algorithms identified 
none or a single identification with ≥ 5 atom% 13C from 
the initial soil samples. This suggested a low false dis-
covery rate among 13C-labeled identifications with ≥ 5 
atom% by the four algorithms.

In the 13C-methanol SIP experiment, the initial soil 
samples were amended with 13C-labeled methanol. To 
identify proteins and microorganisms that incorpo-
rated 13C from methanol, enrichment-resolved database 
searching was performed against the microbial proteins 
identified in the unlabeled regular search (Supplementary 
Table S6). Sipros 4 identified 153 labeled proteins/protein 
groups with ≥ 5 atom% 13C based on 270 labeled peptides. 
In comparison, Sipros 3 identified 81 13C-labeled pro-
teins/protein groups based on 129 labeled peptides, Cal-
isp identified 15 13C-labeled proteins based on 18 labeled 
peptides, and MetaProSIP identified 13 13C-labeled pro-
teins based on 13 labeled peptides (Table 2). While most 
of the protein identifications by Calisp and MetaProSIP 
were based on a single peptide identification, Sipros 3 
and Sipros 4 generated multiple peptide identifications 
for most protein identifications and provided two PSMs, 
on average, per peptide identification.

In the 13CO2 SIP experiment, the rhizosphere soil 
samples were collected from plants grown in the ini-
tial soil in a 13CO2-amended atmosphere. The extracted 
metaproteomes were searched against both the microbial 
proteins and the plant host proteins. From the rhizos-
phere microbial communities, Sipros 4 identified 244 
13C-labeled PSMs and 124 13C-labeled peptides, which 
were assembled into 84 13C-labeled proteins/protein 
groups (Table 2). In comparison, 29, 19, and 1 13C-labeled 
microbial proteins/protein groups were identified by 
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Sipros 3, Calisp, and MetaProSIP, respectively. Sipros 
4 also identified 26 13C-labeled plant proteins/protein 
groups, which was also much more than Sipros 3, Calisp, 
and MetaProSIP (Table 2).

Biological analysis of the proteomic SIP results from 13C SIP 
soil communities
For all the identified proteins in a proteomic SIP sample, 
Sipros 4 quantified both their isotopic enrichment levels 
in terms of atom% and their label abundances in terms 
of labeled spectral counts (Fig.  3). In the 13C-methanol 
SIP experiment, the soil community was sampled after 
3 days and after 8 days of daily 13C-methanol addition. 
The 13C-labeled proteins identified in the day-3 and 
day-8 samples were shown by their enrichment levels 
and label abundances in Fig. 3. 186 13C-labeled PSMs, 97 
peptides, and 63 proteins/protein groups were identified 
in the day-3 samples. 428 13C-labeled PSMs, 255 pep-
tides, and 135 proteins/protein groups were identified 
in the day-8 samples. The median 13C enrichment levels 
of labeled proteins increased from 43.5 atom% on day 3 
to 53.5 atom% on day 8 (Fig. 3). This indicated that, over 
the 5 additional days of 13C-methanol addition, a larger 

number of proteins were labeled, more copies of the 
labeled proteins were synthesized as indicated by their 
higher label abundances, and more 13C was incorporated 
into the labeled proteins as indicated by their higher 
enrichment levels.

In the 13CO2 SIP experiment, 13C was expected to be 
fixed by the plants in their leaves, then transported to 
their roots, and finally transferred to the rhizosphere 
communities. Sipros 4 identified both rhizosphere micro-
bial proteins and plant proteins from the rhizosphere soil 
samples (Fig.  4). The rhizosphere communities yielded 
244 13C-labeled PSMs, 124 labeled peptides, and 84 
labeled proteins/protein groups. Because only a small 
amount of root materials may be present in the rhizos-
phere soils, 161 13C-labeled PSMs, 36 peptides, and 26 
proteins/protein groups were identified from the plants 
(Table 2). The median enrichment levels of 13C were 11% 
for the labeled microbial proteins and 54% for the labeled 
plant proteins.

The sequences of the labeled microbial proteins iden-
tified by Sipros 4 were used to infer their taxonomic 
origins and biological functions (Figs.  3 and 4). In the 
13C-methanol SIP experiment, 136 labeled proteins/

Table 2 Number of 13C-labeled PSMs, peptides, and proteins identified with ≥ 5 atom% 13C in the initial soil, 13C-methanol SIP soil, and 
13CO2 SIP soil

a NA data is not available because Calisp and MetaProSIP do not provide PSM identifications
b FDRs at the peptide level and the protein level were controlled at 1%

SIP Labeled organisms Algorithms # Labeled PSMs # Labeled 
 peptidesb

# Labeled 
proteins/
protein 
 groupsb

Initial soil (no labeling) Microbes Sipros 4 0 0 0

Sipros 3 1 1 1

Calisp NAa 0 0

MetaProSIP NAa 0 0

Plants Sipros 4 0 0 0

Sipros 3 0 0 0

Calisp NA 0 0

MetaProSIP NA 0 0
13C-methanol SIP Microbes Sipros 4 614 270 153

Sipros 3 342 129 81

Calisp NA 18 15

MetaProSIP NA 13 13
13CO2 SIP Microbes Sipros 4 244 124 84

Sipros 3 73 37 29

Calisp NA 19 19

MetaProSIP NA 1 1

Plants Sipros 4 161 36 26

Sipros 3 69 20 15

Calisp NA 1 1

MetaProSIP NA 2 2
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protein groups had phylum-level taxonomic assign-
ments, including 77 Proteobacteria proteins/protein 
groups (391 total PSMs at 35% median 13C enrich-
ment), 47 Actinobacteriota proteins/protein groups 
(105 total PSMs at 6% median 13C enrichment), and 5 
Acidobacteriota proteins/protein groups (9 total PSMs 
at 6% median 13C enrichment) (Figure S2). At the order 
level, 58 proteins/protein groups were identified from 
Rhizobiales (333 PSMs at 32% median 13C enrichment), 
10 proteins/protein groups from Burkholderiales (40 
PSMs at 67% median 13C enrichment), and 8 proteins/
protein groups from Mycobacteriales (13 PSMs at 6% 
median 13C enrichment). In the 13CO2 SIP experiment, 
76 labeled proteins/protein groups had phylum-level 
taxonomic assignments, including 41 Proteobacteria 
proteins/protein groups (139 total PSMs at 11% median 
13C enrichment), 33 Actinobacteriota proteins/protein 
groups (91 total PSMs at 14% median 13C enrichment), 
and 3 Acidobacteriota proteins/protein groups (7 total 
PSMs at 59% median 13C enrichment) (Figure S2). On 
the order level, 15 proteins/protein groups were iden-
tified from Rhizobiales (37 PSMs at 6% median 13C 

enrichment), 11 proteins/protein groups from Burk-
holderiales (57 PSMs at 22% median 13C enrichment), 
and 10 proteins/protein groups from Actinomycetaless 
(39 PSMs at 20% median 13C enrichment). The differ-
ent median enrichment levels and label abundances of 
these taxa reflected their different ecological roles in 
the microbial communities.

Due to the shallow metagenome sequencing, only 54 
MAGs were generated from the soil metagenomes [19]. 
In the 13C-methanol SIP experiment, Sipros 4 identified 
13C-labeled unique proteins from 1 Rhizobiales MAG, 
1 Sphingomonadales MAG, and 1 Propionibacteriales 
MAG, and 3 additional MAGs from other Orders (Sup-
plementary Table S7). In the 13CO2 SIP experiment, 
Sipros 4 identified 13C-labeled unique proteins from 2 
Rhizobiales MAGs, 1 Actinomycetales MAG, 1 Pseu-
domonadales MAG, and 5 additional MAGs from 3 other 
Orders (Supplementary Table S7). This demonstrated 
that strain-level taxonomic resolution can be obtained 
by combining genome-resolved metagenomes with pro-
teomic SIP.

Fig. 3 13C enrichment levels and label abundances of the proteins labeled by 13C-methanol SIP. Both proteomic SIP scatterplots show all 
the identified proteins with ≥ 5 atom% 13C by their enrichment levels (13C atom%) on the x-axis and their label abundances (labeled PSM counts) 
on the y-axis. The sizes of the data points are proportional to the labeled PSM counts of the proteins. A Comparison of the labeled proteins 
identified after 3 days of labeling (red solid circles) and 8 days of labeling (blue solid circles). The top histogram shows the distribution of the label 
abundances across the enrichment levels. The right histogram shows the distribution of labeled proteins by their label abundance. The day 
8 sample contained more labeled proteins with higher label abundances at higher enrichment levels than the day 3 samples. B Taxonomy 
and functions of the labeled proteins. The colors of the symbols represent the taxonomy assignments at the order level of the labeled proteins. The 
shape of the symbols represents the metabolic pathway assignments of the labeled proteins. xoxF and mxaF are two methanol dehydrogenases. 
RuMP is the ribulose monophosphate pathway involved in the methanol assimilation. EMP is the Embden-Meyerhof-Parnas pathway for glycolysis. 
TCA is the tricarboxylic acid cycle. The functions of many of the labeled proteins are related to methanol metabolisms
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The functional annotations of the large number of 
labeled proteins identified by Sipros 4 uncovered the de 
novo protein synthesis activities in the labeled micro-
organisms using the assimilated labeled substrates. 
13C-methanol SIP labeled 22 methanol dehydrogenases 
(XoxF/mxaF) proteins/protein groups (258 PSMs at 59% 
median 13C enrichment) which can convert methanol 
to formaldehyde. For the downstream utilization of for-
maldehyde, a labeled formaldehyde-activating enzyme 
(fae) capable of oxidating formaldehyde to  CO2 was 
identified by 2 PSMs at 82% median 13C enrichment 
and two transaldolases (tal) in the ribulose monophos-
phate (RuMP) pathway for formaldehyde assimilation 
were identified by 6 PSMs at 32% median 13C enrich-
ment. Furthermore, multiple enzymes in the glycolysis 
(EMP) pathway were labeled, including two glyceralde-
hyde-3-phosphate dehydrogenases (gapA) (3 PSMs at 8% 
median 13C enrichment), two enolases (eno) (4 PSMs at 
92% median 13C enrichment), and one dihydrolipoylly-
sine-residue acetyltransferase (aceF) (3 PSMs at 96% 
median 13C enrichment). Many high-abundance enzymes 
in the citric acid cycle (TCA) were labeled by 13C-meth-
anol SIP, including one aconitate hydratase (acnA) (1 
PSM at 88% median 13C enrichment level), one isocitrate 

dehydrogenase (icd) (2 PSM at 5% median 13C enrich-
ment level), and three malate dehydrogenases (mdh) (18 
PSM at 59% median 13C enrichment level) (Figure S3, 
Supplementary Table S8).

The SIP results of Sipros 4 showed that 13CO2 SIP 
labeled 6 xoxF/mxaF proteins/protein groups (21 PSMs 
at 6% median 13C enrichment level), 4 proteins/protein 
groups (14 PSMs at 20% median 13C enrichment level) in 
the EMP pathway, 7 proteins/protein groups (8 PSMs at 
9% median 13C enrichment level) in the TCA, and 3 ribo-
somal proteins/protein groups (19 PSMs at 20% median 
13C enrichment level) (Figure S4, Supplementary Table 
S8). The resemblance in the proteome labeling patterns 
between 13CO2 SIP and 13C-methanol SIP suggested 
methanol as a key plant exudate [24, 25] transferring car-
bon from plants to their rhizosphere communities.

Discussion
Our benchmarking results from the standard E. coli cul-
tures and natural soil samples showed that Sipros 4 was 
able to identify more labeled PSM, peptides, and pro-
teins with a greater atom% quantification precision and 
accuracy than alternative algorithms, including Cal-
isp [20] and MetaProSIP [21]. The benchmarks also 

Fig. 4 13C enrichment levels and label abundances of the proteins labeled by 13CO2 SIP. Both proteomic SIP scatterplots show all the identified 
proteins with ≥ 5 atom% 13C by their enrichment levels (13C atom%) on the x-axis and their label abundances (labeled PSM counts) on the y-axis. 
A Comparison of the labeled proteins identified from microorganisms (brown solid circles) and those from plants (green solid circles). The 
plant proteins were labeled at much higher enrichment levels than the microbial proteins. B Taxonomy and functions of the labeled microbial 
proteins. The colors of the symbols represent the taxonomy assignments at the order level of the labeled proteins. The shape of the symbols 
represents the metabolic pathway assignments of the labeled proteins. xoxF and mxaF are two methanol dehydrogenases. RuMP is the ribulose 
monophosphate pathway involved in the methanol assimilation. EMP is the Embden-Meyerhof-Parnas pathway for glycolysis. TCA 
is the tricarboxylic acid cycle
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demonstrated the unique capability of Sipros to identify 
proteins with isotopic enrichment levels higher than 25%. 
Calisp and MetaProSIP failed on the standard E. coli 
samples with ≥ 25 atom% 13C, because they relied on the 
standard database searching tools that do not consider 
variable isotopic labeling during PSM identification. Pep-
tides not identified by the standard database searching 
are not passed to the enrichment quantification step per-
formed by Calisp and MetaProSIP. In contrast, the Sipros 
algorithm itself performs enrichment-resolved database 
searching over the full enrichment range and, therefore, 
can identify peptides with the 1 atom% enrichment incre-
ments between 0 atom% to 100 atom%.

These algorithms also employ different approaches to 
estimate the enrichment level of a PSM from its MS/MS 
data. Calisp and MetaProSIP both use the isotopic enve-
lope of the precursor ion in the MS1 scan to estimate 
its atom%. Sipros 3 and 4 estimate the atom% of a PSM 
based on the isotopic envelopes of all the observed frag-
ment ions in the MS2 scan. The higher performance of 
Sipros in enrichment quantification may be attributed to 
its isotopic fitting against multiple isotopic envelopes of 
the fragment ions, instead of a single isotopic envelope of 
the precursor ion. This allows aggregating multiple iso-
topic envelopes in the MS2 scans for atom% estimation.

A drawback of Sipros 3, in comparison to Calisp and 
MetaProSIP, was its higher computational cost stem-
ming from the enrichment-resolved database searches at 
101 enrichment levels. To address this, we systematically 
profiled and optimized the Sipros codebase to increase 
computational efficiency. In addition to the multi-node 
process-level parallelism and the multi-core thread-level 
parallelism, we harnessed the Single Instruction Multiple 
Data (SIMD) instructions in modern CPUs to enable fine-
grained data parallelism on key operations. The resultant 
Sipros 4 can run > 20-fold faster than Sipros 3. The com-
putational times for database searching on a commod-
ity computer server were comparable among Sipros 4 
(~ 0.5 h), Calips with Proteome Discoverer (~ 3 h), and 
MetaProSIP with Comet (~ 0.5 h) for the 13C-labeled E. 
coli datasets.

Proteomic SIP quantifies both the label abundances 
and the enrichment levels of the labeled proteins and, 
by extension, their source organisms. The enrichment 
level reflects the percentage of the labeled substrate, 
relative to the unlabeled background substrates, that 
were assimilated and used by an organism for amino 
acid synthesis. For example, in the 13CO2 SIP experi-
ment, the median 13C enrichment levels were 11% for 
the labeled microbial proteins and 54% for the labeled 
plant proteins. Plants were labeled at higher 13C atom% 
probably because fixing 13CO2 and recycling the extant 
biomass are the only two carbon supplies for plant 

growth during the labeling [26]. The lower 13C atom% 
of microorganisms likely reflected their reliance on 
diverse types of carbon sources, encompassing the 
unlabeled soil organic matter and the partially labeled 
plant exudate [27].

The label abundances measure the relative abundances 
of labeled proteins and labeled organisms in terms of 
labeled PSM counts. For example, in the 13C-methanol 
SIP experiment, the aggregate label abundance of the 
soil community increased from 186 PSMs with 3 days of 
labeling to 428 PSMs with 8 days of labeling, while the 
median enrichment level of those PSMs only increased 
moderately from 43.5 atom% 13C in day 3 to 53.5 atom% 
13C in day 8. The 2.3-fold rise of the community label 
abundance likely resulted from the production of new 
microbial proteins and the division of microbial cells over 
those additional 5 days of labeling [28]. The 10% increase 
in the median atom% may reflect a modest increase in 
the proportion of 13C methanol and its labeled deriva-
tives used for the new biomass production.

The biological significance of the labeled proteins can 
be examined based on their function annotations and 
taxonomical assignments. Each labeled protein is a bio-
marker for the isotopic incorporation by its originating 
organism. The taxonomy of the source organisms can 
be inferred from the sequences of the labeled proteins 
(Supplementary Tables S6 and S7). In our 13C-methanol 
SIP study, methanol labeled a known methylotrophic 
genus, Hyphomicrobium [29]. In the 13CO2 SIP experi-
ment,  CO2 labeled known plant growth-promoting 
bacteria (PGPB) from Bradyrhizobium and Micrococ-
caceae [30]. These rhizosphere microorganisms may 
utilize organic acids, amino acids, or sugar from plant 
root exudates as a carbon source [31–33]. When cou-
pled with genome-resolved metagenomics, the labeled 
proteins can directly identify which MAGs have incor-
porated the SIP isotope. The comprehensive functional 
profile of a high-quality MAG allows inferences into 
the larger suite of metabolic pathways involved in the 
uptake of the labeled substrate. This was demonstrated 
by the identification of the methylotrophic pathways 
and associated downstream pathways in the labeled 
MAGs in the 13C-methanol SIP experiment [19]. Ulti-
mately, the label abundances and enrichment levels of 
the labeled proteins uncover the protein synthesis activ-
ities accompanying the metabolism of labeled substrates 
by different taxa, which can then be analyzed further at 
the community level.

The functional annotations of the labeled proteins 
can reveal the de novo protein synthesis activities of 
the source organisms, providing information to detect 
direct translational responses to a perturbation. As 
an organism assimilates the SIP isotope, it produces 
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partially labeled amino acids for protein synthesis. 
Because protein synthesis accounts for 70% to 80% of 
the ATP budget of microorganisms [34, 35], the labeled 
proteome of an organism reveals which biological 
processes it invests its scarce energy budget into. In a 
competitive community, an organism should make its 
energy investment decisions prudently based on the 
anticipated future return from the present investment 
in light of the perceived opportunities arising from its 
external environment. For instance, the 13C-methanol 
SIP results showed that many methanol dehydroge-
nases (e.g., XoxF and MxaF) and other enzymes (e.g., 
tal and fae) involved in the methanol utilization were 
labeled during their de novo synthesis after methanol 
amendments (Fig.  3 and Supplementary Figure S3) 
[36]. Lanthanide-dependent methanol dehydrogenases 
(XoxF type) from Rhizobiales or other Proteobacterial 
taxa have been reported to contribute to the degrada-
tion of methanol in soil [37, 38]. This demonstrated 
that the increased methanol availability prompted the 
organisms to invest in the biological processes to col-
lect and consume methanol.

The newly synthesized abundances of enzymes meas-
ured by proteomic SIP are different from the standing 
abundance of these enzymes measured by regular pro-
teomics. The standing abundance of an enzyme at the 
end of SIP is determined by its extant unlabeled copy 
numbers at the beginning of SIP, plus the de novo syn-
thesis of newly labeled copies, and minus the degrada-
tion of extant copies, over the period of SIP. The labeled 
proteome of the 13C-methanol SIP and 13CO2 SIP also 
included many housekeeping proteins (Fig. 4 and Figure 
S4), which can be attributed to the general growth of the 
source organisms.

Conclusions
Our benchmarking tests demonstrated the high per-
formance and computational efficiency of Sipros 4 for 
sensitive detection of labeled proteins and accurate 
quantification of their enrichment levels in SIP experi-
ments. The label abundances and enrichment levels 
of the labeled proteins provided rich taxonomical and 
functional information about their source organisms. 
Analyses of real-world SIP experiments showcased 
the use of the labeled proteins to identify the micro-
bial consumers of the labeled substrates, reconstruct 
their genomes, and define their de novo protein syn-
thesis activities during the SIP labeling. Continued 
development of analytical tools, such as Sipros 4, 
greatly expanded our capacity to understand meta-
bolic activities in complex microbial communities by 
directly linking substrate assimilation with phylogeny 
and functions.

Materials and methods
Preparation of the E. coli standard samples with known 13C 
atom%
Each E. coli culture with a pre-defined 13C incorporation 
level was grown in a defined medium in the following 
steps. First, 5 μL of E. coli DH5α (New England Biolabs) 
was inoculated into 10 mL of LB medium and incubated 
for 1 day at 37 °C in an incubator (Robbins Scientific). 
Next, 700 μL E. coli-LB culture solution was mixed with 
300 μL 50% glycerin in a 1-mL centrifuge tube and stored 
at − 80 °C as a new inoculant. Then, the 1-mL E. coli inoc-
ulant was washed twice with 1 mL of PBS buffer, and 5 
μL of the washed cells in PBS buffer was inoculated into 
10 mL of a 13C-labeled M9 growth medium in a 50-mL 
centrifuge tube in a biological safety cabinet (Thermo 
Scientific). Supplementary Table S9 lists the recipes of 
the M9 growth media at different 13C atom%, including 
the amounts of 12C glucose and 13C glucose (D-Glucose-
13C6, ≥ 99 13C atom%, Sigma-Aldrich) as the sole carbon 
source for bacterial growth. Finally, the 13C-labeled cul-
ture was incubated at 37 °C for 2 days, reaching > 0.5 OD 
600. Three replicate cultures were grown for each 13C 
atom%.

Protein extraction and LC–MS/MS
The protein extraction was performed as described pre-
viously [19] with some minor modifications. A cell pel-
let in 5 mL of a 13C-labeled E. coli culture was harvested 
immediately after centrifugation at 4 °C and 10,000 × g 
for 1 min. The pellet was washed twice with 1 mL of 10 
mM Tris–HCl buffer at pH 7.0 and resuspended in 0.5 
mL of lysis buffer (100 mM Tris–HCl, 4% SDS, and 0.1 
M freshly added DTT). The cells were sonicated on ice 
for five cycles of 30 s each with pulses. After centrifu-
gation at 4 °C and 10,000 × g for 1 min, the supernatant 
was collected and mixed with 0.5 mL of chilled (− 20 °C) 
50% TCA to reach a final concentration of 25% TCA. The 
tubes were stored at − 20 °C overnight to precipitate the 
proteins. The samples were centrifuged at 20,800 × g for 
20 min to collect the protein pellets, which were then 
washed twice with 1 mL of chilled (− 20 °C) 80% acetone 
and once with 1 mL of chilled acetone. After each wash 
step, the samples were centrifuged again at 20,800 × g 
for 20 min to pellet down the proteins. The protein pel-
lets were dried in a centrifugal evaporator and resolu-
bilized in 585 μL of urea-Tris–HCl solution (8 M urea, 
0.1 M Tris–HCl, pH 8.0). An aliquot of 3 μL of fresh 1 
M DTT solution was added to the urea-Tris–HCl solu-
tion to reach a final concentration of ~ 5 mM DTT. The 
mixture was vortexed for 20 min to dissolve the protein. 
Bubbles were removed by centrifugation at 10,000 × g 
for 10 min. Then, an aliquot of 12 μL of 1 M iodoacet-
amide solution was added to the mixture to achieve an 
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iodoacetamide concentration of 20 mM. After vortexing 
for 10 s, the solution was incubated in the dark at room 
temperature for 30 min. After centrifugation at 10,000 × g 
for 5 min, the supernatant was divided into three 1 mL 
tubes, allocating 200 μL for each. The protein concentra-
tion was measured using the Pierce BCA Protein Assay 
Kit (Thermo Scientific).

Protein digestion was performed using the FASP 
method [39] in a 1-mL 30-kDa ultrafiltration unit (Viva-
con 500, Sartorius). Each sample aliquot with 50 μg 
of protein was digested overnight at 37 °C with 2 μg 
of sequencing-grade modified trypsin (V5113, Pro-
mega). The peptide digest was desalted by Pierce Pep-
tide Desalting Spin Columns (Thermo Scientific) and its 
concentration was measured by NanoDrop 2000 Spec-
trophotometers (Thermo Scientific). The peptide separa-
tion was performed by reverse-phase XSelect CSH C18 
2.5 μm resin (Waters) on a 150 × 0.075 mm column using 
an UltiMate 3000 RSLCnano system (Thermo Scientific) 
with 1 μg of peptides. The peptides were eluted with a 
90-min gradient from 98% solution A and 2% solution B 
to 65% solution A and 35% solution B (solution A = 0.1% 
formic acid, 0.5% acetonitrile and 99.4% water; and solu-
tion B = 0.1% formic acid and 99.9% acetonitrile). The 
eluted peptides were ionized by electrospray (2.4 kV) and 
analyzed by an Orbitrap Fusion Tribrid mass spectrom-
eter (Thermo Scientific) in the data-dependent acquisi-
tion mode. MS1 data were acquired using the Orbitrap 
analyzer in the profile mode at a resolution of 120,000 
over the m/z range of 375–1500. MS2 data were acquired 
using the Orbitrap analyzer in the centroid mode at a 
resolution of 30,000 after HCD activation. The precursor 
isolation window for MS2 was set to 5 in width. Dynamic 
exclusion time was set to 20 s, exclude isotope was set to 
true, and mass tolerance of the isolation window was set 
to 10 ppm. The HCD energy was set to 28% for precur-
sors with charge states between + 3 and + 7 and precur-
sors in the m/z range of 375–650. The HCD energy was 
set to 31% for precursors with a charge state of + 2 and 
precursors in the m/z range of 650–1500. Precursors with 
an unknown charge state or a charge state lower than + 2 
or higher than + 7 were excluded from the MS2 selection.

MS/MS data extraction
The mass spectrometry data need to be extracted into the 
FT1/FT2, MS1/MS2, or mzML formats as the input for 
Sipros. The RAW files generated from the 13C-labeled E. 
coli analyses were converted into FT1 and FT2 files using 
Raxport (https:// github. com/ thepa nlab/ Raxpo rt. net) on 
a Linux server running CentOS 7. Raxport was upgraded 
to be compatible with both Linux and Windows by using 
the RawFileReader library (Thermo Scientific) with the 
Mono framework (https:// www. mono- proje ct. com/). 

The RAW files for the standard E. coli samples were 
uploaded to the ProteomeXchange repository under the 
access number PXD041414.

The RAW files for the 15NH4Cl-labeled acid mine drain-
age (AMD) community were generated in a previous study 
[22] and were uploaded to the ProteomeXchange repository 
with the accession number PXD041958. The RAW files for 
the 13C-methanol-labeled soil communities and the 13CO2-
labeled soil communities [19] were downloaded from the 
ProteomeXchange repository under the access numbers of 
PXD011738 (unlabeled initial soil), PXD011739 (13C-meth-
anol-labeled soil), PXD011737 (13CO2-labeled Arabidopsis 
rhizosphere soil), PXD011891 (13CO2-labeled maize rhizo-
sphere soil), and PXD011892 (13CO2-labeled wheat rhizos-
phere soil). All these RAW files were converted to FT1 and 
FT2 files using Raxport.

Algorithmic improvements in Sipros 4 for SIP searches
By default, Sipros 4 performs database searching across 
101 atom% levels, ranging from 0 to 100% in 1% incre-
ments, as specified in the configuration files. Subse-
quently, the PSMs at these pre-defined integer atom% 
levels were filtered based on their scores to reach a cer-
tain FDR level. Users may customize the atom% incre-
ment (e.g., 0.5%) and the search range (e.g., from 0 to 
10%) in the configuration file based on their experi-
mental requirements. A PSM identifies a peptide at an 
atom% level that best explains the corresponding MS/
MS spectrum. The most abundant isotopic mass of a 
peptide candidate is approximated by the sum of the 
most abundant isotopic masses of all its residues. A 
series of precursor mass tolerance windows are opened 
for a range of unit mass offsets from the measured MS/
MS precursor mass. In Sipros 4, the unit mass offset 
range is customized according to the enrichment level 
of the SIP searches based on the simulation results 
using the poly-Averagine peptides [40]. The size of the 
mass tolerance windows is configurable by users with 
a default value of ±0.01 Da for Orbitrap mass spec-
trometers. Sipros selects the peptide candidates for an 
MS/MS spectrum using its precursor mass tolerance 
windows.

To reconstruct the theoretical spectrum of a peptide 
candidate at a given atom%, Sipros computes the isotopic 
envelopes of all B and Y ions from this peptide. To speed 
up this computation task, the polynomial expansion algo-
rithm used in Sipros 3 was replaced with the convolution 
algorithm [41] in Sipros 4. The convolution algorithm 
was vectorized using single instruction multiple data 
(SIMD) provided by the omp simd directive in OpenMP 
4.0. The SIMD parallelism in Sipros 4 accelerated the 
convolution computation on individual CPU cores on 

https://github.com/thepanlab/Raxport.net
https://www.mono-project.com/
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top of the thread-level parallelism on multi-core CPUs 
and the process-level parallelism across computer nodes 
implemented in Sipros 3.

The scoring function was optimized in Sipros 4 to 
improve the performance of PSM identification. The 
score for a PSM, p , is a sum of the scores of the n B/Y 
ions found in an observed MS/MS spectrum:

where, for the kth matched B/Y ion, hk is the mass accu-
racy score defined in Eq.  2, sk is the isotopic envelope 
score defined in Eq. 3, ck is the charge state penalty, and 
gk is the complementary fragment penalty. ck takes a 
value of 1 when the expected charge state matches the 
observed charge state; otherwise, it assumes a value of 
0.5. gk is assigned a value of 2 in the presence of the com-
plementary fragment ion; otherwise, it is set to 1.

The mass accuracy score of the kth matched B/Y ion, hk , 
is defined as:

where pnorm(•) is the cumulative density function (CDF) 
at the threshold of mk of a normal distribution with the 
mean of 0 and the standard deviation of t/2 , t is the frag-
ment mass tolerance defined by the user in the configu-
ration file, and mk represents the observed average mass 
error of the isotopic peaks of the matched B/Y ion.

The isotopic envelope score of the kth matched B/Y ion, 
sk , is computed as

where ei is the reward for finding an expected isotopic 
peak i (Eq. 4) in this fragment ion’s isotopic distribution 
and uj is the penalty for missing an expected isotopic 
peak j in this fragment ion’s isotopic distribution (Eq. 5).

where x is the expected relative intensity, y is the 
observed relative intensity matched within the mass 
error tolerance, erf (•) is the Gauss error function [42], 
and q represents the isotopic atom% being searched. The 
constants, a , b , c , and g , were set to 0.005, 4, 8, and 0.5, 
respectively, based on heuristic optimization and are 
user-configurable in the search configuration file.
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]

The code and user manual of Sipros 4 were released at 
https:// github. com/ thepa nlab/ Sipro s4.

Database searching of SIP samples by Sipros 4
The FT2 files of the E. coli samples at different 13C 
atom% levels were searched against a target-decoy pro-
tein sequence database comprised of the Escherichia coli 
(strain K12) proteome from UniProt and the non-E. coli 
contaminant proteins from https:// www. thegpm. org/ 
crap/. The reverse sequences of these target proteins 
were added to the database as decoys. The mass error tol-
erance was set to 0.01 Da for precursors and fragments. 
The false discovery rate (FDR) of peptide identifications 
was controlled to 1% by adjusting the score thresholds of 
PSMs. Protein identifications were filtered to reach 1% 
FDR based on the highest PSM score for protein identifi-
cation. At least one unique peptide was required for each 
identified protein/protein group.

The 15NH4Cl-labeled AMD datasets were pro-
cessed similarly using Sipros 4. The target-decoy pro-
tein sequence database was constructed from the AMD 
metagenome assemblies [22]. The SIP isotope was 
changed to 15N. The mass error tolerance was set to 0.05 
for precursors and 0.02 for fragments. The FDRs of pep-
tides and proteins were all controlled to 1% as described 
above.

For the analysis of the low-resolution ion trap MS2 
data from the 15N-labeled spiked mouse gut microbiome 
sample [23], the mass error tolerance was set to 0.02 for 
precursors and 0.11 for fragments. In this low-resolution 
MS2 setting, Sipros used the most intense peak within 
each isotopic envelope to score PSMs, as opposed to all 
isotopic peaks in the high-resolution MS2 setting, which 
reduced the performance of Sipros.

Regular label-free searches were performed on the 
soil 13C-methanol and 13CO2 SIP datasets using Sipros 
Ensemble [43] against a protein database containing all 
predicted proteins from the soil metagenome assem-
blies. All the identified proteins were used to construct 
the protein database for 13C SIP searches using Sipros 
4. Protein sequences of Arabidopsis, wheat, and maize 
were also added to the protein database for the 13CO2 
SIP datasets. The mass error tolerance was set to 0.05 for 
precursors and 0.02 for fragments. The MS/MS spectra 
containing high-density clusters of noise peaks (i.e., > 255 
peaks within any 250-wide m/z window of a spectrum) 
were removed.

The database search for the E. coli samples and AMD 
samples was performed on a compute node equipped 
with dual 22-core Intel Xeon CPUs (Gold 6152) and 376 
GB system memory on the Schooner supercomputer 

https://github.com/thepanlab/Sipros4
https://www.thegpm.org/crap/
https://www.thegpm.org/crap/
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and on a computer server equipped with 24-cores AMD 
Ryzen CPU (5965WX) and 512 GB system memory. 
The database search for the soil samples was completed 
on computing nodes equipped with dual 10-core Intel 
Xeon Haswell CPUs and 32 GB system memory on the 
Schooner supercomputer.

SIP analysis by Calisp and MetaProSIP
Calisp and MetaProSIP can quantify the atom% of pep-
tides that have been identified by label-free database 
searching using Proteome Discoverer (for Calisp) or 
Comet (for MetaProSIP). The RAW files of all the SIP 
samples were converted into the mzml format using 
ProteoWizard. The regular database searching was per-
formed with Proteome Discoverer using the default 
parameters from its data-dependent acquisition work-
flow template. The same protein databases described 
above were provided to Proteome Discoverer. The FDRs 
of identified PSMs, peptides, and proteins were all con-
trolled to 1%. The enrichment levels of the identified 
peptides were quantified by Calisp using the default 
parameters according to its tutorial (https:// sourc eforge. 
net/p/ calis-p/ wiki/ Home/).

The SIP analysis by MetaProSIP was conducted in the 
TOPASS environment by OpenMS [44]. Briefly, the MS/
MS data of all the SIP samples were converted to mzml 
files and searched using Comet [45] with default param-
eters to generate label-free identifications. The FDRs of 
identified PSMs, peptides, and proteins were controlled 
to 1%. The label-free identifications and mzml files 
were provided to MetaProSIP as the input using default 
parameters according to https:// sourc eforge. net/ proje 
cts/ open- ms/ files/ Papers/ MetaP roSIP/.

Analysis and visualization of the SIP search results
The eggNOG-mapper [46] was used to annotate the func-
tions of the proteins based on GO terms, EC numbers, 
and KEGG terms. The taxonomy of protein was annotated 
using the annoTree database [47] with DIAMOND [48] and 
MEGAN6 [49]. A protein group was assigned to a taxon if 
more than 70% of its member proteins were assigned to 
this taxon. Similarly, a protein group was annotated with a 
functional assignment if more than 70% of its member pro-
teins were annotated with this functional assignment. For 
the genome-resolved proteomic SIP analysis, an MAG was 
marked as labeled if at least one unique labeled peptide was 
identified from this MAG. Functional enrichment analy-
sis of labeled proteins was performed using clusterProfiler 
[50]. The phylogenetic tree of labeled microorganisms was 
visualized using ggtree [51]. The Student’s t-test and Wil-
coxon test were performed in R 4.2.1 [52].
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The four bar charts from the left to the right represent the number of 
unlabeled proteins identified in the 13C-methanol SIP soils, the number 
of unlabeled proteins identified in the 13CO2 SIP soils, the number of 
labeled proteins identified in the 13C-methanol SIP soils, and the number 
of labeled proteins identified in the 13CO2 SIP soils from each Order. The 
heatmap columns from the left to right show the average enrichment 
levels of the labeled proteins identified in the 13C-methanol SIP soils and 
the 13CO2 SIP soils from each Order. Supplementary Figure S3. functional 
analysis of 13C-methanol SIP results. (A) Boxplot of the 13C enrichment 
levels of PSMs identified in the day-3 sample and the day-8 sample. The 
t-test p-value is less than 0.001, indicated by ***. (B) Boxplot of the labeled 
protein counts identified in the day-3 sample and the day-8 sample. The 
t-test p-value is less than 0.05, indicated by *. (C) 13C-labeled enzymes 
involved in methanol degradation. The names of the pathways are high-
lighted in blue. The enzyme names and EC numbers are annotated in yel-
low for identified enzymes and in red for identified enzymes significantly 
enriched in the 13C-labeled proteins. (D) Top-10 enriched KEGG Orthology 
(KO) terms with adjusted P-value < 0.01 for the 13C-labeled proteins. (E) 
Enriched molecular functions of GO terms, with adjusted P-value < 0.01, 
for the 13Clabeled proteins. Supplementary Figure S4. functional analysis 
of 13CO2 SIP results. (A) total label abundances of the plant proteins and 
microbial proteins. The t test p-value is less than 0.001, indicated by ***. (B) 
Top-10 enriched KO terms with adjusted P-value < 0.01 for the 13C-labeled 
proteins. (C) Enriched molecular functions of GO terms, with adjusted 
P-value < 0.01, for the 13C-labeled proteins.
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