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Abstract 

Background  Alpha-synuclein aggregation, a hallmark of Parkinson’s disease (PD), is hypothesized to often begin 
in the enteric or peripheral nervous system in “body-first” PD and progresses through the vagus nerve to the brain, 
therefore REM sleep behavior disorder (RBD) precedes the PD diagnosis. In contrast, “brain-first” PD begins in the cen-
tral nervous system. Evidence that gut microbiome imbalances observed in PD and idiopathic RBD exhibit similar 
trends supports body-first and brain-first hypothesis and highlights the role of microbiota in PD pathogenesis. How-
ever, further investigation is needed to understand distinct microbiome changes in body-first versus brain-first PD 
over the disease progression.

Results  Our investigation involved 104 patients with PD and 85 of their spouses as healthy controls (HC), 
with 57 patients (54.8%) categorized as PD-RBD(+) and 47 patients (45.2%) as PD-RBD(−) based on RBD presence 
before the PD diagnosis. We evaluated the microbiome differences between these groups over the disease progres-
sion through taxonomic and functional differential abundance analyses and carbohydrate-active enzyme (CAZyme) 
profiles based on metagenome-assembled genomes. The PD-RBD(+) gut microbiome showed a relatively stable 
microbiome composition irrespective of disease stage. In contrast, PD-RBD(−) microbiome exhibited a relatively 
dynamic microbiome change as the disease progressed. In early-stage PD-RBD(+), Escherichia and Akkermansia, 
associated with pathogenic biofilm formation and host mucin degradation, respectively, were enriched, which 
was supported by functional analysis. We discovered that genes of the UDP-GlcNAc synthesis/recycling pathway 
negatively correlated with biofilm formation; this finding was further validated in a separate cohort. Furthermore, fiber 
intake-associated taxa were decreased in early-stage PD-RBD(+) and the biased mucin-degrading capacity of CAZyme 
compared to fiber degradation.

Conclusion  We determined that the gut microbiome dynamics in patients with PD according to the disease progres-
sion depend on the presence of premotor RBD. Notably, early-stage PD-RBD(+) demonstrated distinct gut microbial 
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characteristics, potentially contributing to exacerbation of PD pathophysiology. This outcome may contribute 
to the development of new therapeutic strategies targeting the gut microbiome in PD.

Keywords  Parkinson’s disease, Microbiome, Rapid eye movement sleep behavior disorders, Biofilm, Carbohydrate-
active enzymes

Background
Alpha-synuclein aggregation, a pathologic marker of Par-
kinson’s disease (PD), is found in the extranigral area even 
in early-stage PD, especially in the dorsal motor nucleus 
of the vagus nerve and enteric nervous system. Braak 
et  al. hypothesized that alpha-synuclein may propagate 
from the peripheral nervous system to the central nerv-
ous system [1, 2], and phosphorylated alpha-synuclein 
positivity was identified in gastrointestinal nerve fibers 
years prior to the PD diagnosis [3]. Moreover, animal 
studies have demonstrated that injection of preformed 
alpha-synuclein fibrils into the mouse duodenum results 
in the propagation of alpha-synuclein in the brain via the 
vagus nerve, suggesting a potential connection between 
the gut and alpha-synuclein aggregation in PD [4].

However, not all PD patients exhibit pathology that 
begins in the enteric nervous system. Some PD autopsy 
cases revealed no pathologic alpha-synuclein inclusions 
in the dorsal motor nucleus of the vagus nerve in the 
pons, whereas other cases featuring limbic-predominant 
alpha-synuclein inclusions exhibited minimal brainstem 
involvement [5]. Based on these findings, the concepts of 
“body-first” PD, where pathology originates in the enteric 
or peripheral nervous system, and “brain-first” PD, where 
pathology begins in the central nervous system descend-
ing to the peripheral nervous system emerged. A key dis-
tinguishing feature of the body-first PD is the presence 
of idiopathic REM sleep behavior disorder (RBD) sev-
eral years prior to the PD diagnosis, indicating pathology 
propagation from the subcoeruleus complex in the pons 
to the substantia nigra. Moreover, 35–60% of patients 
diagnosed with PD exhibited RBD prior to their PD 
diagnosis (premotor RBD) [6], and these patients dem-
onstrated significantly higher enteric alpha-synuclein 
histopathology than patients with PD without premotor 
RBD [7], and slower colon transit time [5].

The gut microbiome of PD patients was imbalanced 
and had lower diversity compared to healthy controls 
(HC) [8]. A meta-analysis uncovered a decrease in short-
chain fatty acid producers, such as Faecalibacterium and 
Roseburia, and an increase in the mucin-degrading genus 
Akkermansia in PD [8], which were associated with 
accelerated disease progression [9]. Additionally, animal 
experiments have demonstrated that curli protein pro-
duced by Escherichia coli cross-seeds with alpha-synu-
clein, thereby promoting alpha-synuclein aggregation 

[10, 11]. A recent study also showed that bacterial curli 
combined with a fiber-deprived diet reduce gut barrier 
integrity, increase the intestinal and brain alpha-synu-
clein, and alter the microbiome, leading to motor perfor-
mance in the animal model [12]. We can hypothesize that 
body-first PD patients might be significantly influenced 
by the gut microbiome; potentially, this change could 
contribute to the pathogenesis of PD. This is supported 
by previous studies showing that altered gut microbiota 
composition in idiopathic RBD exhibits trends similar to 
those observed in PD [13–15]. Furthermore, in brain-first 
PD, RBD may manifest after PD diagnosis due to pathol-
ogy extending from the substantia nigra to the pons, and 
the microbiome differences between these two groups 
may be attenuated as the disease progresses.

However, there are still some uncertainties: it remains 
unclear whether microbial changes will differ between 
body-first PD and brain-first PD. Considering the bidi-
rectional gut-brain communication, neurodegeneration 
can influence gut function and modify the microbiota, 
as in brain-first PD. Additionally, PD pathology develops 
over time in both brain-first and body-first PD; it is rea-
sonable to predict that the gut microbiome will undergo 
changes in both types as the disease progresses. The aim 
of this study is to investigate how the presence of RBD 
affects gut microbiome composition and function over 
the disease progression. Additionally, we conducted a 
characterization of gut microbiome composition and 
function in the early stages of the disease.

Materials and methods
Study population
In this prospective case–control study, we enrolled 
patients with PD and their spouses as HCs at Asan Medi-
cal Center from 2019 to 2024. The patients fulfilled the 
UK Brain Bank criteria for PD [16]. The research work 
design is elaborated in a prior study [17], and we amassed 
additional PD patients without premotor RBD to the 
prior cohort in 2024 (n = 19), since the preceding cohort 
included fewer PD patients without premotor RBD than 
PD patients with RBD. We gathered information regard-
ing age at study enrollment, sex, body mass index, disease 
duration, PD medication, and disease severity as Hoehn 
and Yahr stage and United Parkinson’s Disease Rating 
Scale (UPDRS). Diet was evaluated utilizing a semi-quan-
titative food frequency questionnaire [18]. Irritable bowel 
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syndrome (IBS) and constipation were assessed using the 
ROME III diagnostic criteria [19]. As a routine practice, 
we interviewed the patients with PD regarding the pres-
ence of RBD at the time of PD diagnosis using the RBD 
Single-Question Screen (RBD1Q) [20]. Subsequently, 
we could use electronic medical records to examine the 
presence of premotor RBD based on RBD1Q. We cat-
egorized the patients into PD with premotor RBD (PD-
RBD[+]) and patients with PD without premotor RBD 
(PD-RBD[−]) groups.

Stool sample collection and sequencing
Stool samples of patients with PD without premotor 
RBD were collected using stool sampling kits (CJ Biosci-
ence Inc., Seoul, Korea) and stored at − 80 °C until use. 
DNA was extracted using a DNeasy PowerSoil Pro Kit 
(QIAGEN, Hilden, Germany) that adhered to the manu-
facturer’s instructions. The extracted DNA was quanti-
fied utilizing the Quant-IT PicoGreen (Invitrogen). For 
shotgun metagenome sequencing, sequencing libraries 
were prepared by TruSeq Nano DNA High Throughput 
Library Prep Kit (Illumina) according to the manufac-
turer’s instructions. Sequencing was conducted utiliz-
ing the Illumina NovaSeq X platform (2 × 150 bp). For 
the 16S rRNA gene amplicon sequencing, the extracted 
DNA was amplified using PCR with 16S rRNA gene V3–
V4 hypervariable region primers: forward, 341F (5′-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG 
CCT ACG GGN GGC WGC AG-3′); reverse, 805R (5′-
GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG 
ACA GGA CTA CHV GGG TAT CTA ATC C-3′). The 
sequencing library was prepared with the Nextera XT 
Index (Illumina) and then sequenced using the Illumina 
MiSeq platform (2 × 300 bp).

16S rRNA gene amplicon sequencing data analysis
V3-V4 PCR primer sequences in raw reads were trimmed 
utilizing the Cutadapt (v4.0) [21] with the flags “–discard-
untrimmed” and “–match-read-wildcards.” Subsequently, 
trimmed reads were imported into Qiime2 (v2022.11) 
[22] and underwent DADA2 (v1.22) [23] denoising. 
Taxonomic classification of amplicon sequence variants 
(ASVs) was performed using the Naïve Bayes classifier 
via scikit-learn (v0.24.1) [24] in a q2-feature-classifier 
[25], trained on the SILVA 138 SSURef NR99 database 
[26, 27]. ASVs not classified into the domain Bacteria 
were excluded from downstream analysis. A phylogenetic 
tree was established using SATé-enabled phylogenetic 
placement (SEPP) [28] through the q2-fragment-inser-
tion plugin [29], based on the SILVA 128 SEPP reference 
database.

Taxonomic and functional profiling of shotgun 
metagenome sequencing data
The raw metagenomic reads were processed using Kne-
adData (v0.12.0) (http://​hutte​nhower.​sph.​harva​rd.​edu/​
knead​data) [30]. Quality filtering and adapter trimming 
were employed using Trimmomatic (v0.39) [31] and host-
derived reads were removed using Bowtie2 (v2.5.1) [32] 
with the GRCh38 human genome. Taxonomic composi-
tions were profiled via MetaPhlAn4 (v4.0.1) [33] employ-
ing the mpa_vJan21_CHOCOPhlAnSGB database. 
Functional composition was profiled using HUMAnN3 
(v3.6) [34] based on the UniRef90 database [35] which 
was then regrouped into the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) orthology (KO) profiles 
[36] using the “humann_regroup_table” script. The anno-
tation of KOs to the KEGG pathway was conducted using 
the KEGG Mapper [37] and R package Pathview (v1.38.0) 
[38]. KEGG enrichment analysis for differentially abun-
dant KOs was performed using the R package Microbi-
omeProfiler (v1.4.0) [39].

For large-scale cohort data analysis, sequencing data 
from Wallen et  al. [40] were downloaded from NCBI 
SRA (BioProject accession no. PRJNA834801) and sub-
sequently analyzed as described above. Data pertaining 
to current antibiotic use or gastrointestinal disease were 
excluded from the downstream analysis. Consequently, 
data from eligible individuals (157 controls and 294 PD) 
were utilized for the analysis.

Beta diversity analysis
Taxonomic and functional composition tables, except for 
MetaPhlAn4 outputs which formed the relative abundance 
table, were rarefied to minimum sample depths prior to 
diversity analysis. UniFrac distances [41] were calculated 
using the R package rbiom (v1.0.3). The resulting high-
dimensional matrices were analyzed to principal coordi-
nate analysis (PCoA) for dimensionality reduction using 
the stats (v4.2.1). The PCoA were visualized using ggplot2 
(v3.4.2). Next, the statistical significances were identi-
fied using permutational multivariate analysis of variance 
(PERMANOVA) through vegan (v.2.6.4). For pairwise 
PERMANOVA testing, p values were adjusted using Hom-
mel’s method, unless indicated otherwise. Throughout the 
manuscript, adjusted p-values are referred to as q values.

Differential abundance analysis
We utilized the currently developed differential abun-
dance (DA) analysis methods, MaAsLin2 [42] with com-
pound Poisson linear models (v1.12.0) and ANCOM-BC 
[43] (v2.0.3; for function composition data). In the tax-
onomy and CAZyme DA analysis, any features present 
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in less than 10% of all samples were filtered out. In the 
function DA analysis, features present in less than 15% 
were filtered out. For multiple testing, p values were cor-
rected using the Benjamini–Hochberg method to control 
false discovery rates. The q value < 0.1 was considered 
significant.

Enterosignature decomposition
The enterosignature (ES) profile was determined as 
described by Frioux et  al. [44]. We utilized the pre-
trained ES model provided by the authors (https://​gitlab.​
inria.​fr/​cfrio​ux/​enter​osign​ature-​paper/) and adjusted the 
taxonomic features between our feature table and pre-
trained ES model. Subsequently, the ES composition was 
profiled using the “reapply_nmf.py” script and visualized 
using the R package ggplot2 (v3.4.2).

Metagenome‑assembled genomes reconstruction
The raw metagenomic reads were processed using 
BBTools (v39.01, https://​jgi.​doe.​gov/​data-​and-​tools/​
softw​are-​tools/​bbtoo​ls/). Host-derived contaminants 
were mapped to the GRCh38 human genome using Bow-
tie2. Next, mapped reads were filtered out using SAM-
tools [45] (v1.16.1). Each sample’s processed reads were 
individually assembled using SPAdes [46] (v3.15.5) with 
a “–meta” mode. Contigs of length ≥ 1 kb were utilized 
for the downstream metagenome-assembled genomes 
(MAG) analysis. The reads were mapped back to the con-
tigs from the corresponding metagenome as well as to 
the contigs from each of the 39 different metagenomes 
using Bowtie2 to generate the contig depth information. 
Contigs from each metagenome were individually binned 
using MetaBAT2 [47] (v2.15), MaxBin2 [48] (v2.2.7), 
and CONCOCT [49] (v1.1.0). Output MAGs were fur-
ther refined using the DAS Tool [50] (v1.1.6). The qual-
ity of the bins was assessed using CheckM [51] (v1.2.2) 
with lineage-specific workflows and bins with complete-
ness < 50% or contamination > 5% were excluded from the 
downstream analysis. Taxonomy was annotated utiliz-
ing GTDB-Tk [52] (v2.2.6). Open reading frames of the 
MAGs were predicted by using Prodigal [53] (v2.6.3) and 
annotated by using Prokka [54] (v1.14.6) with default, 
PGAP, and Pfam databases. KEGG orthology (KO) anno-
tation was conducted using KofamScan [55] (v1.3.0).

CsgA sequence analysis with MAGs
Curli major subunit CsgA sequences of the MAGs were 
retrieved from the annotation results. Reference CsgA 
sequences of E. coli and Citrobacter youngae were down-
loaded from UniProt with the accession numbers P28307 
and A0A9Q7ZLG0, respectively. A multiple sequence 
alignment was conducted utilizing Clustal Omega [56] 
(v1.2.4). The phylogenetic tree of the sequences was 

constructed using IQ-TREE [57] (v1.6.12) with default 
parameters. The result of multiple sequence alignment 
was imported into R using Biostrings (v2.72.1) and then 
visualized using ggseqlogo (v0.2) and ggplot2 (v3.4.2).

CAZyme prediction using MAGs
The CAZymes of each bin and corresponding substrate 
were annotated using dbCAN3 [58]. Read coverages were 
determined using featureCounts [59] (v2.0.4) and then 
normalized by gene length. Mucin- and fiber-targeting 
CAZymes were identified based on previous studies 
(Additional file 2: Table S1).

Correlation analyses
Spearman’s rank and Pearson correlation coefficients 
were calculated using the R package rstatix (v0.7.2). 
For taxonomic and functional feature tables, the cen-
tered-log ratio (CLR) method was applied using the R 
package microbiome (v1.20.0) prior to conducting cor-
relation analyses. Features observed in less than 10% of 
the samples were excluded from the analyses. Correla-
tion results with q value < 0.05 and an absolute rho coef-
ficient (|ρ|) ≥ 0.3 were further utilized for visualization in 
Cytoscape (v3.10.0) [60]. For visualization of the results 
from Wallen et al. [40], the R package rstatix was used. P 
values were adjusted using Benjamini–Hochberg correc-
tion to control the false discovery rate.

Other statistical analysis and visualization
Fisher’s exact test, Pearson’s chi-squared test, Wilcoxon 
rank-sum test, and Kruskal–Wallis H test were performed 
using R package stats. For additional visualizations, R 
packages ggplot2 (v3.4.2), patchwork (v1.1.2.9000), ggsig-
nif (v0.6.4), ggalluvial (v0.12.5), ggrepel (v0.9.3), and 
ggpubr (v0.6.0) were utilized. Considering the significant 
difference in age across groups (Table 1), especially in the 
late stage (Supplementary table S6), age was adjusted as a 
covariate in the analyses when using the entire sample or 
late-stage data. Linear regression analysis was conducted 
using lm function of R package stat (v4.3.1). Power analy-
sis was conducted using R package micropower (v0.4) 
[61].

Results
Baseline demographics
Of the 112 patients with PD and 85 HC, we excluded 8 
patients with PD due to a lack of information on RBD 
prior to the PD diagnosis. Among 104 PD patients, 57 PD 
patients had RBD before the PD diagnosis (PD-RBD[+]), 
while 47 PD patients did not have RBD prior to the PD 
diagnosis (PD-RBD[−]).The PD-RBD(−) group was 
younger than both the PD-RBD(+) and HC groups (p 
value = 0.028), and there were no significant differences 
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in sex, BMI, or the presence of IBS (Table 1). Constipa-
tion was significantly higher in the PD groups compared 
to the HC group (p value < 0.001). There were no sig-
nificant differences in medication use (for PD, constipa-
tion, insomnia, and depression), levodopa equivalent 
daily dose (LEDD; value representing intensity of dopa-
minergic treatment), and dietary intake between the 
PD-RBD(+) and PD-RBD(−) groups (Table  1 and Sup-
plementary Table  S1). Stool samples were collected and 
analyzed by 16S rRNA gene amplicon sequencing and/
or shotgun metagenome sequencing: total of 185 sam-
ples—including 55 patients in PD-RBD(+), 46 patients 
in PD-RBD(−) and 84 HC––were used for 16S rRNA 
gene amplicon sequencing, and 166 stool samples––51 
patients in PD-RBD(+), 42 patients in PD-RBD(−), and 
73 HC—were used for shotgun metagenome sequencing.

Differences in the gut microbiome between PD‑RBD(+) 
and PD‑RBD(−) were attenuated as the disease progressed
At the early-stage of disease (< 2 years after PD diagno-
sis), gut microbial compositions of PD-RBD(+) were 
significantly different from those of PD-RBD(−) (shot-
gun metagenome sequencing [shotgun]: R2 = 0.05, q 
value = 0.045; 16S rRNA gene amplicon sequencing [16S]: 
R2 = 0.043, q value = 0.009) and HC (shotgun: R2 = 0.038, 
q value = 0.003; 16S: R2 = 0.021, q value = 0.006) (Fig. 1A, 
B) in beta-diversity analysis. On the other hand, early-
stage PD-RBD(−) showed no significant compositional 
difference compared with HC (shotgun: R2 = 0.021, q 
value = 0.078; 16S: R2 = 0.013, q value = 0.15). In the 

late-stage PD-RBD(+), consistent with early-stage find-
ings, the gut microbiome still exhibited a significant devi-
ation from the HC (shotgun: R2 = 0.025, q value = 0.028; 
16S: R2 = 0.013, q value = 0.042 with age as a covariate) 
(Fig.  1C–F). However, unlike in the early stage, the gut 
microbiomes of PD-RBD(+) and PD-RBD(−) in the late 
stage became closer to each other (shotgun: R2 = 0.030, 
q-value = 0.075; 16S: R2 = 0.021, q value = 0.198 with age 
as a covariate). Moreover, gut microbiome of late-stage 
PD-RBD(−) deviated from HC (shotgun: R2 = 0.023, q 
value = 0.028; 16S: R2 = 0.015, q value = 0.036 with age as 
a covariate), in contrast to the similar pattern observed in 
the early stage. The distinct gut microbiome composition 
between early-stage PD-RBD(+) and PD-RBD(−), as well 
as their relatively similar composition in the late stage, 
remained consistent even after adjusting for the use of 
levodopa or the LEDD as a covariate (Additional file  1: 
Supplementary Table S2). To assess the statistical power 
of PERMANOVA, we conducted the power estimation 
method using the unbiased effect size estimator (ω2) [61]. 
The analysis revealed that a sample size of 20 per group 
provided 90% power to detect a ω2 of 0.012 and 0.019 for 
16S and shotgun data, respectively. In PERMANOVA 
test involving smaller sample sizes in both groups—early-
stage PD-RBD(+) and PD-RBD(−) (Fig. 1 A and B)—the 
corresponding ω2 values were 0.019 and 0.027 for 16S 
and shotgun data, respectively, allowing for 90% power.

In the correlation analysis, longer disease duration 
of PD-RBD(−) was positively correlated with devia-
tions in gut microbiome composition from that in the 

Table 1  Baseline demographics of patients with Parkinson’s disease (PD) and the healthy controls (HC)

BMI body mass index, COMT catechol-O-methyltransferase, IBS irritable bowel syndrome, UPDRS unified Parkinson’s disease rating scale, MAO monoamine oxidase, IQR 
interquartile range, RBD rapid eye movement sleep behavior disorder

PD-RBD(+) (n = 57) PD-RBD(−) (n = 47) HC (n = 85) P value

Age, mean (SD) 66.1 ± 7.1 61.9 ± 8.8 64.6 ± 8.0 0.03

Male, n (%) 36 (63.2%) 19 (40.4%) 40 (47.1%) 0.05

BMI (kg/m2), median (IQR) 24.3 (22.3–26.7) 24.5 (22.2–26.6) 23.9 (21.5–25.5) 0.26

Education (years), median (IQR) 12.0 (9.0–16.0) 12.0 (12.0–16.0) 12.0 (12.0–16.0) 0.33

IBS, n (%) 1 (1.8%) 1 (2.1%) 3 (3.5%) 0.79

Constipation, n (%) 29 (50.9%) 18 (38.3%) 11 (12.9%)  < 0.001

Disease duration (years), median (IQR) 2.0 (0.0–7.0) 2.0 (1.0–4.5) – 0.94

Hoehn & Yarh stage, median (IQR) 2.0 (2.0–3.0) 2.0 (2.0–3.0) – 0.59

UPDRS Part 3 score, mean (SD) 33.0 ± 13.0 29.9 ± 9.9 – 0.28

UPDRS total score, mean (SD) 48.0 ± 19.5 43.7 ± 15.3 – 0.33

Use of levodopa, n (%) 45 (80.4%) 40 (85.1%) – 0.30

Use of dopamine agonist, n (%) 18 (32.1%) 23 (48.9%) – 0.08

Use of COMT inhibitor, n (%) 2 (3.6%) 7 (14.9%) – 0.09

Use of MAO inhibitor, n (%) 17 (30.4%) 8 (17.0%) – 0.18

Use of amantadine, n (%) 12 (21.4%) 9 (19.1%) – 0.97

Levodopa equivalent daily dose 450.0 (225.0–711.2) 450.0 (300.0–730.0) – 0.96
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HC (shotgun: Pearson’s r = 0.14, p value = 3.7e-15; 16S: 
r = 0.19, p value < 2.2e-16) (Fig.  1G, H) and the early-
stage disease within the same group (shotgun: r = 0.21, 
p value = 9e-06; 16S: r = 0.24, p value = 1.6e-08) (Fig.  1I, 
J). The same analysis on PD-RBD(+) showed a non-
significant result or profoundly smaller correlation 
coefficients than those in PD-RBD(−) (Distances to 
HC—shotgun: r = − 3.7e-3, p value = 0.82; 16S: r = 0.15, 
p value < 2.2e-16—and distances to early-stage disease— 
shotgun: r = 0.031, p value = 0.44; 16S: r = 0.13, p = 2.4e-4) 
(Fig. 1G–J). Even when accounting for age as a covariate 
in a linear regression model, PD-RBD(+) exhibited a rela-
tively stable microbiome (its distance from HC or from 
its early stage did not increase with disease duration), 
whereas PD-RBD(−) showed a relatively dynamic micro-
biome (showing an increasing distance from HC or from 
its early stage as disease duration progressed) (Additional 
file 1: Supplementary Tables S3 and S4). The interaction 
between disease duration and PD-RBD(−) also showed a 
significant positive association (Additional file 1: Supple-
mentary Tables S3 and S4).

Therefore, we focused on investigating the gut micro-
biome of patients with early-stage PD (< 2 years after PD 
diagnosis) in further studies when the microbiome differ-
ences between PD-RBD(+) and PD-RBD(−) were prom-
inent. In early-stage PD, age, sex, BMI, presence of IBS 
and constipation, LEDD, and use of medications (for PD, 
constipation, insomnia, and depression) were not sig-
nificantly different between PD-RBD(+) and PD-RBD(−) 
groups (Additional file  1: Supplementary Table  S5). The 
characteristics of late-stage PD (≥ 2 years after PD diag-
nosis) are detailed in Supplementary Table  S6. Further-
more, apart from levodopa, the usage rates of other 
medications were generally low, particularly in the early 
stage (Additional file  1: Supplementary Table  S5). The 
analysis of individual items from the ROME III crite-
ria revealed that early-stage PD-RBD(+) patients had 
significantly higher rates of straining during defecation 

compared to early-stage PD-RBD(−) patients, and they 
also tended to have a higher proportion of lumpy or hard 
stools (Additional file 1: Supplementary Table S5). How-
ever, these trends were not observed in the late-stage 
PD-RBD(+) group (Additional file  1: Supplementary 
Table S6).

Distinct taxonomic features in the gut microbiome 
of early‑stage PD‑RBD(+)
To identify the differential taxa among PD-RBD(+), PD-
RBD(−), and HC, we employed DA analysis using both 
shotgun metagenomics and 16S rRNA gene amplicon 
data (Additional file  3). In PD-RBD(+), an increased 
abundance of genera Escherichia (when compared to 
PD-RBD[−]), Desulfovibrio, Barnesiella, Eisenbergiella 
(when compared to HC), Akkermansia and Hunga-
tella (when compared to both PD-RBD[−] and HC) was 
found on shotgun data (Fig.  2A and B). Notably, these 
genera are abundantly reported in relation to the PD 
gut microbiome [14, 17, 40, 62–67]. Escherichia coli has 
recently garnered attention due to its potential link with 
PD pathogenesis, especially because of its ability to gen-
erate curli amyloid fibrils [10–12, 68–70]. Akkermansia 
and Barnesiella specialize in mucin degradation [71], 
thereby diminishing the intestinal mucus layer. Addition-
ally, previous studies demonstrated an increase in Akker-
mansia and Desulfovibrio in idiopathic RBD patients 
and PD-RBD(+) patients [13]. Eisenbergiella and Hun-
gatella have been identified as enriched in patients with 
PD [40, 62, 72, 73] and multiple sclerosis [74]; moreover, 
Eisenbergiella is also increased in PD-RBD(+). However, 
the specific mechanisms linking these bacteria to dis-
ease pathology remain unclear and necessitate further 
investigations.

Prevotella, Faecalibacterium, and Agathobaculum were 
lower than HC in PD-RBD(+) on shotgun data (Fig. 2 A 
and C). Prevotella and Faecalibacterium demonstrated 
a positive association with fiber intake [75–77], and 

Fig. 1  Different gut microbiome alteration patterns in PD-RBD(+) and PD-RBD(−) depending on disease progression. A, B Principal coordinate 
analysis (PCoA) plots based on the unweighted UniFrac distance matrix using (A) shotgun metagenome and (B) 16S amplicon sequencing 
data from patients with early-stage PD and HC. Overall and pairwise permutational analysis of variance (PERMANOVA) were utilized to ascertain 
the significance of gut microbiome differences across groups. Bonferroni correction was implemented to adjust the p-value in pairwise 
PERMANOVA. Large circles represent the centroids for each group. The ellipses represent the 95% confidence interval. C, D The unweighted UniFrac 
distance-based PCoA illustrates gut microbiome variations across the disease stages: early (less than 2 years after PD diagnosis) and late (greater 
than or equal to two years after PD diagnosis). E, F Results of pairwise PERMANOVA analyses encompassing early- and late-stage of PD-RBD(+) 
and PD-RBD(−). Age was used as a covariate due to the age differences observed in late-stage samples, as shown in Supplementary table S6. G, H 
Unweighted UniFrac distances from PD-RBD(+) (blue) and PD-RBD(−) (red) to HC across the disease duration, employing (G) shotgun metagenome 
and (H) 16S rRNA gene amplicon data, respectively. I, J Unweighted UniFrac distances of PD-RBD(+) (blue) and PD-RBD(−) (red) from the late stages 
to their respective early stages, using (I) shotgun metagenome and (J) 16S rRNA gene amplicon data, respectively. ***p < 0.001 for PERMANOVA. 
*q < 0.05; **q < 0.01 for pairwise PERMANOVA. ns not significant, r Pearson correlation coefficient, PD Parkinson’s disease, RBD rapid eye movement 
sleep behavior disorder, HC healthy control

(See figure on next page.)
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Agathobaculum was reported to exert neuroprotective 
effects in the intrastriatal 6-hydroxydopamine lesion-
induced PD mouse model via the AKT/GSK3β signaling 
pathway [78]. The overall taxonomic characteristics of 
PD-RBD(+) displayed comparable trends of enrichment 
or depletion when compared to both HC and PD-RBD(−) 
samples (Spearman’s ρ = 0.36, p value = 2.5e-5) (Fig. 2E).

In PD-RBD(−), genera Coprobacter, Erysipelato-
clostridium (currently renamed to Thomasclavelia), Leu-
conostoc (when compared to HC), and Citrobacter (when 
compared to PD-RBD[+]) were enriched (Fig.  2 A and 
D). Coprobacter and Erysipelatoclostridium have been 
reported to increase in patients with Alzheimer’s dis-
ease [79], neurosyphilis [80], and autism [81] as well as 

Fig. 1  (See legend on previous page.)



Page 8 of 22Lee et al. Microbiome          (2025) 13:108 

PD [82], but not in idiopathic RBD or PD-RBD(+) in the 
previous studies [62]. Although the role of Citrobacter in 
PD is not yet known, Citrobacter is also known for pro-
ducing curli amyloid fibrils; however, its curli exhibits a 
significantly lower propensity to aggregation with alpha-
synuclein compared to that of Escherichia [70]. The 16S 
data at the genus or higher taxonomic levels (Fig. S1) and 
shotgun data at the species level (Fig. S2) mirrored the 
results obtained from the shotgun data at the genus level 
(Fig. 2).

In summary, our data highlights a significant discrep-
ancy in a gut microbiome of PD-RBD(+) compared to 
that of HC as PD-RBD(−), characterized by the increase 
of curli-producing Escherichia and mucin-degrading 
bacteria, and depletion of bacteria associated with fiber 
intake. In contrast, PD-RBD(−) demonstrated distinct 
gut microbiome different from PD-RBD(+) or HC, and 
some of which were associated with other neurological 
disorders, but not idiopathic RBD.

Dysbiotic signatures in the taxonomic compositions 
of PD‑RBD(+)
An Enterobacteriaceae bloom is associated with a dis-
ruption in the gut microbiome balance, commonly 
referred to as dysbiosis [83, 84]. Given that Escherichia, 
which belongs to Enterobacteriaceae, was found to be 
enriched in PD-RBD(+) (Fig.  2, S1, and S2), we investi-
gated whether the taxonomic composition of the gut 
microbiome in PD-RBD(+) is suggestive of dysbiosis. 
Notably, the model fit scores for PD-RBD(+) in the enter-
osignature analysis (see “Materials and methods” section) 
[44] were markedly lower than those for the HC (Wil-
coxon rank-sum test with Holm-Bonferroni correction, 
q value = 0.033) (Fig. S3), suggesting a dysbiotic state in 
PD-RBD(+). No significant disparities in the model fit 
score were found in PD-RBD(−) (q value = 0.32).

Distinct functional characteristics in the gut microbiome 
of early‑stage PD‑RBD(+)
To identify the functional characteristics of each group, 
we utilized DA based on KEGG orthology (KO) func-
tional profiles (Additional file 3). Among the total of 5817 

KOs, PD-RBD(+) showed marked functional differences 
compared to HC (373 enriched and 296 depleted KOs) 
and PD-RBD(−) (295 enriched and 5 depleted KOs). In 
contrast, PD-RBD(−) compared to HC resulted in only 23 
significantly different KOs (Fig. 3A). Of the significantly 
altered KOs in PD-RBD(+) when in comparison with HC 
and PD-RBD(−), 203 KOs were consistently enriched in 
PD-RBD(+), corresponding to 54.4% of the KOs enriched 
compared to HC and 51.3% compared to PD-RBD(−) 
(Fig. 3B; top panel). For the depleted KOs, although only 
5 were significantly decreased in PD-RBD(+) compared 
to PD-RBD(−), 3 of these overlapped with the HC com-
parison, representing 60% of the total depleted KOs in 
PD-RBD(−) (Fig.  3B; bottom panel). Overall directions 
of functions enriched or depleted in PD-RBD(+) when 
compared to HC and PD-RBD(−) exhibited a similar 
trend (Spearman’s ρ = 0.69, p value < 2.2e-16) (Fig. 3C).

By mapping differential functions to the KEGG path-
way, we found that the enriched functions in PD-RBD(+) 
were associated with the “Biofilm formation–Escherichia 
coli” pathway (map02025) (Fig. 3 D and E). The depleted 
functions were related to the “Amino sugar and nucleo-
tide sugar metabolism pathway” (map00520) when com-
pared to both HC and PD-RBD(−) (Fig.  3C), as well as 
“Peptidoglycan biosynthesis” (map00550), and “Starch 
and sucrose metabolism” (map00500) pathways when 
compared to HC (Fig.  3D and E). Detailed explanations 
of these functional results are provided in the subsequent 
sections.

Augmentation of the E. coli biofilm pathway in the gut 
of early‑stage PD‑RBD(+)
In PD-RBD(+), among the genes associated with E. coli 
biofilm formation, we found significant increases in the 
abundance of curli operon genes including csgD (a master 
regulator of biofilm formation) and csgE (curli production 
assembly/transport component) when compared to HC, 
and csgA (curli major subunit) when compared to PD-
RBD(−) (Fig.  4A). Additionally, ydaM, which positively 
regulates the csgD gene, was enriched in PD-RBD(+) 
compared to both HC and PD-RBD(−). We also observed 
significant enrichment of bcsA and bcsB in PD-RBD(+) 

(See figure on next page.)
Fig. 2  Differential abundance analyses reveal gut microbiome differences in PD-RBD(+) compared to PD-RBD(−) and HC. A Overall results 
of pairwise DA analyses utilizing shotgun metagenome data. Rows were hierarchically clustered using the complete linkage method. Taxa 
referenced in the main text are emphasized in bold. B, C Taxa (B) enriched or (C) depleted in PD-RBD(+) compared to PD-RBD(−) and/or HC 
as identified by the shotgun metagenome data at the genus level. D Taxa enriched in PD-RBD(−) than PD-RBD(+) or HC. E Scatter plot depicts 
the results of DA analyses comparing PD-RBD(+) with PD-RBD(−) (x-axis) and with HC (y-axis). Positive values on both axes represent a positive 
correlation with PD-RBD(+), while negative values imply a reverse association. The overall results illustrate a substantial positive correlation, 
suggesting a similar association of taxa with PD-RBD(+) compared to PD-RBD(−) and HC. Red and green represent the taxa depicted in (B) and (C), 
respectively. q < 0.1; *q < 0.05; **q < 0.01; ***q < 0.001. ns not significant, ρ Spearman’s rank correlation coefficient, PD Parkinson’s disease, RBD rapid 
eye movement sleep behavior disorder, HC healthy control, DA differential abundance, RA relative abundance
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Fig. 2  (See legend on previous page.)
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compared to those in HC and/or PD-RBD(−) (Fig.  4A). 
These genes contribute to the production of cellulose, an 
essential component of biofilms that confers enhanced 
cohesion and elasticity [85–87].

Previous studies [11, 69] have highlighted that the 
capacity of bacterial curli to foster the aggregation of 
alpha-synuclein varies based on the amyloidogenic 
potential of CsgA, which is dictated by its amino acid 
sequence. This suggests that the qualitative property 
(amino acid sequence) of CsgA is as important as the 
quantitative property (gene abundance) in explaining its 
association with PD pathology. In light of this evidence, 
we analyzed the qualitative aspects of the curli path-
way. First, we investigated whether the taxa involved in 
the curli biofilm pathway varied among groups. In PD-
RBD(+), the genus Escherichia largely accounted for 
the taxonomic contribution to the curli and cellulose 
production pathway (Fig. S4). However, in PD-RBD(−) 
and HC, the genera Citrobacter and Enterobacter also 
contributed to the biofilm pathway, comparable to or 
even exceeding the contribution of Escherichia, indicat-
ing potential heterogeneity of the curli biofilm pathway 
in these groups. To further explore the qualitative prop-
erties of CsgA—the actual component that cross-seeds 
alpha-synuclein—we constructed metagenome-assem-
bled genomes (MAGs) (Fig. S5) and identified the csgA 
gene in a total of 43 Enterobacteriaceae genomes (com-
prising 30 Escherichia, 8 Citrobacter, 4 Enterobacter, and 
1 UBA7405 genomes). Among these, CsgA sequences of 
Escherichia were distinct from those of other Enterobac-
teriaceae members (Fig. S6A). In accordance with pre-
vious reports [69, 88, 89], all CsgA sequences obtained 
from the current study demonstrated conserved repeat 
regions R1–R5 with consensus sequence Gln-X₄-Asn-
X₅-Gln (Figs.  4B and S6B). However, in the gatekeeper 
residues, which modulate aggregation efficiency of CsgA, 
heterogeneity across taxonomy was observed (Figs.  4B 
and S6B). Given that the CsgA gatekeeper residues of 
Citrobacter are causally linked to a markedly limited 
alpha-synuclein aggregation ability [69], suggesting that 
qualitative properties in addition to abundance of genes 
are also noteworthy in a clinical context.

Depletion of the UDP‑GlcNAc synthesis and recycling 
pathway in early‑stage PD‑RBD(+)
We revealed a significant depletion of the uridine 
diphosphate N-acetylglucosamine (UDP-GlcNAc) bio-
synthesis and recycling pathway (Fig.  5A)—a subpath-
way related to the amino sugar and nucleotide sugar 
metabolism (map00520) and the peptidoglycan biosyn-
thesis (map00550) pathways—in the gut microbiome 
of PD-RBD(+) compared to those in both HC and PD-
RBD(−) (Fig. 5B). Particularly, the glmM and glmU genes, 
which encode phosphoglucosamine mutase (converting 
d-glucosamine 6-phosphate [GlcN-6P] to d-glucosamine 
1-phosphate [GlcN-1P]) and a bifunctional UDP-GlcNAc 
pyrophosphorylase/glucosamine-1-phosphate N-acetyl-
transferase (synthesizing UDP-GlcNAc from GlcNAc-1P), 
respectively, were significantly decreased in PD-RBD(+). 
Further, the abundance of nagE, which encodes the 
N-acetylglucosamine (GlcNAc)-specific sugar phospho-
transferase system EIICBA component (uptake extracellu-
lar GlcNAc), was also significantly depleted in PD-RBD(+) 
compared with HC and/or PD-RBD(−) (Fig.  5B). These 
genes were predominantly associated with gram-positive 
bacteria, such as Faecalibacterium, Bifidobacterium, Blau-
tia, and Collinsella (Fig.  5B). UDP-GlcNAc, synthesized 
by GlmM and GlmU, serves as a building block for pep-
tidoglycan synthesis and is subsequently released into the 
environment in the form of GlcNAc during the cell wall 
turnover process [90]. These environmental GlcNAc is 
taken up by NagE and then either recycled for UDP-Glc-
NAc synthesis or utilized for energy [91]. It also acts as a 
signaling molecule that modulates various cellular pro-
cesses. For instance, environmental GlcNAc inhibits the 
expression of curli genes in E. coli [92]. Given the observed 
depletion of the UDP-GlcNAc synthesis/recycling path-
way in PD-RBD(+),environmental GlcNAc is speculated 
to be scarce in PD-RBD(+), potentially fostering a favora-
ble condition for biofilm formation by bacteria.

Inverse relationship between biofilm formation 
and the UDP‑GlcNAc synthesis/recycling pathway
We observed a significant negative correlation between 
glmU, an essential gene for UDP-GlcNAc synthesis, and 

Fig. 3  Distinct functional characteristics of PD-RBD(+) compared to PD-RBD(−) and HC. A Bar plot displaying the counts of differentially abundant 
KEGG orthology (KO) across the group comparisons. The orientation and color of the bars signify which group the KOs are enriched in. B Venn 
diagrams illustrate the counts of differentially abundant KOs identified in the DA analyses comparing PD-RBD(+) with both PD-RBD(−) with HC. C 
Scatter plot illustrates the results of DA analyses of functional profiles comparing PD-RBD(+) with PD-RBD(−) (x-axis) and HC (y-axis). Positive values 
on both axes denote a positive association with PD-RBD(+), while negative values suggest an inverse one. Red represents genes engaged in Biofilm 
formation–Escherichia coli pathway, while green indicates those involved in the UDP-GlcNAc synthesis/recycling pathway. D, E Results of KEGG 
enrichment analyses using differentially abundant KOs in PD-RBD(+) compared to (D) HC and (E) PD-RBD(−). Only results with adjusted p < 0.1 
are presented. The pathways discussed in the main text are emphasized in bold. PD Parkinson’s disease, RBD rapid eye movement sleep behavior 
disorder, HC healthy control, KEGG Kyoto Encyclopedia of Genes and Genomes, ρ Spearman’s rank correlation coefficient

(See figure on next page.)



Page 11 of 22Lee et al. Microbiome          (2025) 13:108 	

Fig. 3  (See legend on previous page.)
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csgD, a master regulator of biofilm formation (Spearman’s 
ρ = − 0.32, p value = 4.00E-4) (Fig. 5C). We also identified 
overall negative correlations between the genes involved 
in biofilm formation and those in UDP-GlcNAc synthesis 
and recycling pathways (Fig. S7A). Notably, abundances 
of genes associated with UDP-GlcNAc production and 
recycling were negatively correlated (q value < 0.05) with 
those of biofilm-producing Escherichia and Klebsiella 
(Fig. S7B). Particularly, Escherichia was enriched in PD-
RBD(+) (Figs. 2, S1, and S2). However, the UDP-GlcNAc 
synthesis and recycling pathway showed a positive corre-
lation with Faecalibacterium, Agathobaculum, and Fusi-
catenibacter (Fig. S5B)—most of which were depleted 
in PD-RBD(+) (Figs.  2, S1, and S2). To further validate 
the general trend of a negative correlation between bio-
film formation and the UDP-GlcNAc synthesis/recycling 
pathways, we analyzed a large-scale PD shotgun study 
from Wallen et al. (see “Materials and methods” section) 
[40]. This large cohort study also demonstrated a signifi-
cant negative correlation (q value < 0.05) for the genes 
involved in these pathways (Fig. S8), thereby confirming 
the negative correlation observed in our dataset.

To investigate a relationship between the distribu-
tion of microbial genes, glmU and csgD, and the host 
disease status, all patients were categorized into four 
types based on the average CLR abundance of glmU 
and csgD: glmU-High/csgD-High, glmU-High/csgD-
Low, glmU-Low/csgD-High, and glmU-Low/csgD-Low 
(Fig. 5D). There was a significant discrepancy in the dis-
tribution of types between HC and PD-RBD(+) (Fisher’s 
exact test: q value = 8.8E-0.3). No significant differences 
were observed between PD-RBD(+) and PD-RBD(−) 
(q value = 0.35), nor between HC and PD-RBD(−) (q 
value = 0.69). In particular, csgD-High/glmU-Low type 
was the most prevalent in the PD-RBD(+).Consequently, 
given that the environmental GlcNAc downregulates the 
biofilm-associated genes in E. coli [92], the UDP-GlcNAc 
synthesis and recycling pathway might partially contrib-
ute to PD pathogenesis by modulating the formation of 
detrimental bacterial biofilms.

CAZyme properties in early‑stage PD‑RBD(+) are biased 
toward mucin degradation
Carbohydrate-active enzyme (CAZyme) is a group of 
enzymes that break down, modify, and synthesize com-
plex carbohydrates such as host glycans in the gas-
trointestinal tract, thereby affecting host health [93]. 
Previous studies reported that diminished mucus layer 
is prone to implantation of opportunistic pathogens, 
such as E. coli, thereby leading to infection and inflam-
mation [94–96]. Given that the mucin-degrading bac-
teria, Akkermansia and Barnesiella, were enriched in 
PD-RBD(+) (Figs.  2, S2, and S3), we examined whether 
CAZyme property of PD-RBD(+) is also function-
ally altered compared to other groups. We analyzed the 
CAZyme profiles using MAGs reconstructed from the 
current dataset (see Methods and Fig. S5), and com-
pared CAZyme composition across groups based on the 
DA (Additional file 3). In the comparison of PD-RBD(+) 
and HC, we identified 38 HC-enriched CAZymes and 15 
PD-RBD(+)-enriched CAZymes (Fig. 6A). Among the 38 
HC-enriched CAZymes, 23 (60.5%) were known for pri-
marily degrading dietary fiber, whereas a relatively small 
portion of the CAZymes, i.e., 3 (7.9%), were targeting 
host mucin. In contrast, of the 15 PD-RBD(+)-enriched 
CAZymes, only 1 (6.7%) CAZyme targeted dietary fiber, 
while 3 (20%) were known to degrade host mucin, sug-
gesting a notable functional shift towards mucin deg-
radation in PD-RBD(+). This biased capability toward 
mucin degradation over fiber based on significantly dif-
ferent CAZymes was further statistically tested (Fisher’s 
exact test: p value = 3.7E-4) (Fig. S9A). Three CAZymes 
were significantly enriched in PD-RBD(−) compared to 
HC, although their involvement with fiber or mucin deg-
radation remains unknown so far (Fig. S9B). No signifi-
cant differences were observed between PD-RBD(+) and 
PD-RBD(−).

The target substrate profiles of the differentially abun-
dant CAZymes further reaffirmed the preference of PD-
RBD(+)-enriched CAZymes toward host mucin. Most 
of the HC-enriched CAZymes primarily targeted dietary 

(See figure on next page.)
Fig. 4  Differential gene abundances and diverse curli sequence characteristics in the gut microbiome of patients with PD and HC. A The 
abundance of the genes involved in the biofilm formation–E. coli pathway (KEGG pathway map02025) was found to be significantly elevated 
in PD-RBD(+) compared to those in HC and/or PD-RBD(−). The csgD gene (red box) serves as a master regulator for the biofilm formation pathway, 
and the ydaM gene is an upregulator of csgD. CsgD facilitates curli production by activating the csgBAC (encoding curli subunits and a curli 
chaperone) and csgEFG (encoding a curli secretion system) operons (orange box). Furthermore, CsgD enhances the expression of adrA, which 
in turn triggers the cellulose synthase operon bcsABZC through the signaling molecule c-di-GMP (blue box). Both curli and cellulose constitute 
bacterial biofilms. The curli fibrils produced during this process promote pathologic aggregation of alpha-synuclein. B The sequence logo of curli 
major subunit CsgA sequences retrieved from the MAGs or from the reference DB (UniProt P28307 for E. coli K12 and A0A9Q7ZLG0 for Citrobacter 
youngae). The multiple sequence alignment used to build the sequence logo is visualized in Fig. S6B (Additional file 1). All CsgA sequences 
exhibited conserved repeat regions (R1–R5 indicated by black arrows; only R2-R4 are shown in this figure). The gatekeeper residues are highlighted 
and indicated by purple arrows. q < 0.1; *q < 0.05. PD Parkinson’s disease, RBD rapid eye movement sleep behavior disorder, HC healthy control, KEGG 
Kyoto Encyclopedia of Genes and Genomes, RA relative abundance, MAG metagenome-assembled genome
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fibers such as xylan, pectin, beta-glucan, cellulose, ara-
binan, and starch (Fig.  6B). In contrast, PD-RBD(+)-
enriched CAZymes exhibited a stronger preference for 
host-derived carbohydrates, such as host glycans and 
human milk polysaccharides (HMOs) (Fig.  6B). We 
further investigated the relationship between the gut 

microbiota and CAZymes by assessing the contribution 
of bacterial taxa to the differentially abundant CAZymes 
(Fig.  6C). We further observed that Prevotella, which is 
sensitive to dietary fiber [76, 97], was a predominant con-
tributor to HC-enriched CAZymes. Its contribution was 
roughly proportional to the magnitude of the coefficient 

Fig. 4  (See legend on previous page.)
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in the HC-enriched CAZymes in the DA (Fig.  6 A and 
C). Other fiber-associated bacteria Faecalibacterium 
and Fusicatenibacter [75, 97, 98], and neuroprotective 
bacteria Agathobaculum [78]—all of which displayed 
positive correlations with the UDP-GlcNAc synthesis 

and recycling pathway (Fig. S5B)—also contributed sub-
stantially to HC-enriched CAZymes (Fig.  6C). In con-
trast, UBA1829 and Akkermansia, both of which belong 
to phylum Verrucomicrobiota, predominantly contrib-
uted to the PD-RBD(+)-enriched CAZymes (Fig.  6C). 

Fig. 5  The UDP-GlcNAc synthesis/recycling pathway is depleted in PD-RBD(+) and negatively correlated with bacterial biofilm formation. 
A Schematic representation of the UDP-GlcNAc synthesis and recycling pathway, which is related to the amino sugar and nucleotide sugar 
metabolism (KEGG pathway map00520) and peptidoglycan biosynthesis (map00550) pathways. Solid red arrows denote reactions catalyzed 
by enzymes encoded by genes exhibiting significant differences in the DA analyses, whereas solid black arrows signify reactions facilitated by those 
without significant differences. B Relative abundances of significantly different genes marked by solid red arrows in (A). Pie charts represent 
taxonomic contributions to each gene across groups. C Scatter plot of centered log-ratio (clr) transformed abundances for csgD and glmU genes, 
which are essential for biofilm formation and UDP-GlcNAc synthesis, respectively. These genes show a negative correlation (ρ = − 0.32, p = 4.0E-4). 
D Distribution of the four subject categories based on the clr-transformed abundances of csgD and glmU genes across groups. Fisher’s exact test 
was used for statistical analysis. q < 0.1; *q < 0.05; ***q < 0.001 for DA analysis. **p < 0.01 for Fisher’s exact test. ns not significant, ρ Spearman’s rank 
correlation coefficient, GlcN-6P glucosamine 6-phosphate, GlcN-1P glucosamine 1-phosphate, GlcNAc N-acetylglucosamine, GlcNAc-6P GlcNAc 
6-phosphate, GlcNAc-1P GlcNAc 1-phosphate, UDP-GlcNAc uridine diphosphate-GlcNAc, DA differential abundance, PD Parkinson’s disease, RBD 
rapid eye movement sleep behavior disorder
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Bacteroides, Phocaeicola, and Cryptobacteroides, all of 
which belong to Bacteroidales, exhibited an even con-
tribution across most of the differentially abundant 
CAZymes (Fig. 6C).

Consequently, the gut microbiome of PD-RBD(+) 
exhibited a marked functional preference for mucin deg-
radation over that for fiber degradation in their CAZymes 
profile. Excessive degradation of host mucin by the gut 

microbiome could increase susceptibility to pathogenic 
infections and gut inflammation [94–97].

Discussion
In this study, we discovered that the gut microbiome 
in PD-RBD(+) (patients with PD and premotor RBD) 
maintained a distinct composition regardless of disease 
stage, that of PD-RBD(−) (patients with PD without 

Fig. 6  Differentially abundant CAZymes between PD-RBD(+) and HC, and the associated substrates and taxa. A A waterfall plot of DA analysis 
comparing the CAZyme profiles between PD-RBD(+) and HC. Only significant results are shown. CAZymes targeting dietary fibers and host 
mucins are indicated by green and red colors, respectively. Error bars represent the standard error from the model. B, C (B) Target substrate and (C) 
taxonomic contribution profiles of differentially abundant CAZymes. The order of CAZymes along the x-axis is consistent with that in (A). GH 
glycoside hydrolase, GT glycosyl transferase, PL polysaccharide lyase, CE carbohydrate esterase, AA auxiliary activity, CMB carbohydrate-binding 
module, PD Parkinson’s disease, RBD rapid eye movement sleep behavior disorder, HC healthy control, DA differential abundance
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premotor RBD) began with a composition similar to HC 
but diverged toward PD-RBD(+) as the disease advanced. 
Notably, gut bacteria associated with host mucin deg-
radation (Akkermansia and Barnesiella) and patho-
genic biofilm formation (Escherichia) were increased in 
PD-RBD(+). Fiber intake-associated taxa, Prevotella, 
Faecalibacterium, and Agathobacter were decreased in 
PD-RBD(+). These were further supported by functional 
analysis: biased mucin degrading capacity of CAZymes 
rather than fiber degradation and increased biofilm 
master regulator csgD in PD-RBD(+). Genes related to 
biofilm formation were negatively correlated with UDP-
GlcNAc synthesis/recycling pathways; this was further 
validated in a separate cohort [40], suggesting the inhibi-
tory role of the UDP-GlcNAc pathway on biofilm forma-
tion (Fig. 7).

Most of our taxonomy findings are consistent with 
previous studies investigating the gut microbiome in idi-
opathic RBD, PD, and PD with premotor RBD [8, 13–15, 
17, 40, 62–65, 72, 73], which have reported an enrich-
ment of Akkermansia, Eisenbergiella, Desulfovibrio, Hun-
gatella, and Barnesiella, and a decreased abundance of 
Prevotella, Faecalibacterium, and Agathobacter. Notably, 
Coprobacter, Erysipelatoclostridium, and Leuconostoc—
rarely reported in studies of PD [82, 99]—were observed 
to increase in PD-RBD(−). Four studies [40, 62, 63, 72] 
employing shotgun metagenome sequencing implicat-
ing functional insights, with three reporting alterations 
in carbohydrate metabolism pathways [40, 62, 72] and 
one study [40] indicating an increase in curli produc-
tion in patients. Only one of these studies included a 
PD-RBD(−) group [15]; however, due to the limitations 
of 16S rRNA gene amplicon sequencing, it presented 
limited functional implications based on predicted func-
tional profiles. Additionally, only one of the shotgun 
metagenomics studies accounted for RBD status [62]. In 
this context, our study addresses an important knowl-
edge gap by providing a comprehensive functional per-
spective on early-stage PD with premotor RBD, thereby 
extending our understanding of these associations in 
addition to prior findings.

The microbial composition of PD-RBD(+) exhibited a 
unique profile compared to that of HC or PD-RBD(−); 
this characteristic was stable during the disease pro-
gression. However, the microbial composition of PD-
RBD(−) was initially close to HC but gradually changed 
toward that of PD-RBD(+). A key distinguishing feature 
of the body-first PD is the presence of idiopathic REM 
sleep behavior disorder (RBD) several years prior to the 
PD diagnosis, indicating pathology propagation from 
the subcoeruleus complex in the pons to the substantia 
nigra. In brain-first type, central nervous degeneration 
occurs independently of RBD. Thus, the relatively stable 

microbiome composition observed in PD-RBD(+), and 
similar gut microbiome profile between PD and idio-
pathic RBD [13–15] may suggest that disease progression 
in the gut may have reached an advanced stage, leav-
ing little room for further change. In contrast, the rela-
tively dynamic shifts in the gut microbiome composition 
according to disease stages in PD-RBD(−) may suggest 
that pathological processes in the gut could be affected 
by disease progression. Although we cannot definitively 
determine the routes involved—whether through the 
spread of alpha-synuclein or the immune system—these 
findings emphasize the potential role of the gut microbi-
ota in the pathophysiology of PD and highlight the need 
for further investigation.

The genus Escherichia, which is enriched in PD-
RBD(+), is recognized for its production of the amyloid 
fiber protein curli, which is an essential component for 
biofilm formation [70, 87, 100]. Recently, various in vivo 
studies have underscored the putative contributing role 
of curli protein in PD pathogenesis, particularly in facili-
tating alpha-synuclein aggregation and inflammation in 
the gut and brain [10–12, 68–70]. In the current study, 
we demonstrated the enrichment of genes involved in 
the biofilm formation pathway in PD-RBD(+) (Fig.  4). 
Additionally, genes involved in the synthesis of cellu-
lose—another pivotal biofilm component that confers 
enhanced cohesion and elasticity to the bacterial biofilm 
[85–87]—were also enriched in PD-RBD(+) compared 
to those in PD-RBD(−) and/or HC. Enrichment of these 
biofilm-associated genes in the metagenomes was largely 
accounted for by the genus Escherichia. Thus, the detri-
mental effects of curli proteins from Escherichia biofilms 
on PD pathophysiology may be confined exclusively to 
PD-RBD(+) and be independent of the PD-RBD(−). This 
could elucidate the rapid progression factors of clini-
cal symptoms in PD with premotor RBD potentially via 
increased adherence to host cells of Escherichia and 
alpha-synuclein cross-seeding, both of which could con-
sistently incite inflammation.

In PD-RBD(+), carbohydrate-degrading ability of the 
gut microbiome shifts from primarily degrading die-
tary fibers to degrading host mucin [94, 95]. This is in 
line with taxonomy findings, which showed significant 
enrichment of the genera Akkermansia, Barnesiella, Des-
ulfovibrio, and Hungatella in PD-RBD(+), along with 
depletion of Prevotella, Faecalibacterium, and Agatho-
bacter. Akkermansia and Barnesiella specialize in mucin 
degradation, and Desulfovibrio is known to use the sulfate 
liberated from mucin [71]. Hungatella was also recently 
reported as capable of degrading host glycans [101]. In 
contrast, Prevotella, Faecalibacterium, and Agathobacter 
are known to be associated with fiber intake. Excessive 
mucin degradation leads to gut barrier dysfunction with 
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a thinner mucus layer, thereby predisposing the host to 
inflammatory conditions such as pathogen infection [94, 
95, 102] and inflammatory diseases [97]. These inflam-
matory conditions have been reported to be associated 
with an increased risk of PD [103–107].

Although these similar functional and taxonomic 
changes have been reported under fiber deprivation 
conditions [76, 94, 95, 98], dietary surveys in our study 
confirmed that there was no actual difference in fiber 
consumption between PD-RBD(+) and PD-RBD(−), 
with median fiber intake of 34–36 g even exceeding the 
recommended amount 25 g [108] (Additional file 1: Sup-
plementary Table S1). The diet may have shifted toward a 

healthier pattern following PD diagnosis. Consequently, 
dietary habits during the critical period of pathology for-
mation, few years prior to PD diagnosis, may not have 
been accurately reflected. The long-term effects of die-
tary changes on gut microbiota are unclear, as evidence 
suggests that short-term dietary changes may have less 
impact on gut microbiota composition than habitual 
diet patterns [108]. Also, gut dysbiosis of PD would not 
respond well to fiber-rich diet. While the mechanis-
tic relationship remains unknown in the current study, 
these findings suggest that restoring normal gut micro-
biome balance through dietary interventions alone may 
be challenging in a dysbiotic context [108]. Investigating 

Fig. 7  Graphical summary of the current study. Left panel: In both HC and early-stage PD-RBD(−) compared to early-stage PD-RBD(+), 
the gut microbiome tends to favor degradation of dietary fibers over host mucin. In line with this, the abundance of fiber-associated bacteria 
(i.e., Prevotella, Faecalibacterium, and Agathobacter) is increased, whereas that of mucin degradation-associated bacteria (i.e., Akkermansia, 
Barnesiella, and Desulfovibrio) is decreased. In HC and PD-RBD(−), fiber-associated bacteria are associated with enhanced capability to discharge 
N-acetylglucosamine (GlcNAc) into the environment, which in turn suppresses biofilm formation by biofilm-producing bacteria (i.e., Escherichia). 
Right panel: Conversely, in early-stage PD-RBD(+) compared to both in HC and early-stage PD-RBD(−), the gut microbiome shows a preference 
for degrading host mucin over dietary fibers. Correspondingly, abundance of fiber-associated bacteria is reduced, and that of mucin 
degradation-associated bacteria is increased. The reduction in fiber-associated bacteria may lead to a scarcity of GlcNAc, thereby facilitating easier 
biofilm formation by bacteria. Consequently, these characteristics of PD-RBD(+) may be associated with increased susceptibility to infection 
and inflammation, potentially contributing to the exacerbation of PD pathophysiology, such as alpha-synuclein aggregation. PD Parkinson’s disease, 
RBD rapid eye movement sleep behavior disorder, HC healthy control. Created with BioRender.com
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strategies to address dysbiosis in conjunction with dietary 
interventions could be essential in developing effective 
treatments for diseases associated with gut microbiome 
imbalances.

Signatures of gut dysbiosis were apparent in PD-
RBD(+). Escherichia, infamously associated with dysbio-
sis [83, 84], was enriched in PD-RBD(+). Additionally, 
a significantly lower ES model fitness was observed in 
PD-RBD(+). This indicates a deviation from typical gut 
microbiome compositions and an association with the 
causative events of dysbiosis [44]. Importantly, gut dys-
biosis is known to be positively associated with increased 
gut inflammation and permeability [70, 83, 84, 109], 
which have been previously reported in PD [105, 107, 
110–112]. Hence, assessing and comparing intestinal 
inflammation and permeability between PD-RBD(+) and 
PD-RBD(−) may provide further insights into the role of 
detrimental gut conditions in PD pathogenesis.

Depletion of the UDP-GlcNAc synthesis and recy-
cling pathway was another prominent feature of the gut 
microbiome in PD-RBD(+). UDP-GlcNAc serves as a 
precursor of cell wall peptidoglycan in bacteria. Once 
incorporated into cell wall peptidoglycans as GlcNAc, it 
is eventually released into the environment via active cell 
wall turnover, thereby elevating the level of environmen-
tal GlcNAc [90, 91]. Environmental GlcNAc might play 
a role in PD pathogenesis through two potential mecha-
nisms in the gut: Firstly, it modulates the biofilm forma-
tion of intestinal bacteria. GlcNAc-6P, the intracellularly 
imported form of environmental GlcNAc, downregulates 
the biofilm-associated genes in E. coli [92]. Thus, intesti-
nal GlcNAc could act as an inhibitory molecule for bio-
film formation by pathogenic bacteria. This is supported 
by the inverse relationships between the genes involved 
in the biofilm formation and the UDP-GlcNAc synthe-
sis/recycling pathways observed both in our data and 
another large-scale cohort [40]. Secondly, it modulates 
host O-GlcNAcylation profiles. O-GlcNAcylation is a 
type of post-translational modification, in which the Glc-
NAc moiety from UDP-GlcNAc is covalently attached to 
Ser/Thr residues on proteins. Recent studies have under-
scored the importance of O-GlcNAcylation in PD patho-
genesis. Specifically, O-GlcNAcylation of alpha-synuclein 
prevents its pathogenic aggregation and mitigates neu-
ronal cell death and motor deficits in a PD animal model 
[113, 114]. Notably, exogenous GlcNAc can increase 
intracellular UDP-GlcNAc and O-GlcNAcylation levels 
[91, 115, 116]. Hence, it is plausible that the intestinal 
GlcNAc originating from the gut microbiome and dietary 
sources impacts the host O-GlcNAcylation profiles. Col-
lectively, the scarcity of GlcNAc in the gut of PD-RBD(+) 
might provide favorable circumstances for biofilm for-
mation by gut pathobionts like E. coli, and alter the host 

protein O-GlcNAcylation, which is potentially related to 
PD pathogenesis.

We found that Coprobacter, Erysipelatoclostridium, 
Leuconostoc, and Citrobacter were positively associated 
with PD-RBD(−) compared with PD-RBD(+) or HC. 
Coprobacter and Leuconostoc are SCFA-producing bacte-
ria, which were positively associated with PD in one study 
each [79, 80], but not in idiopathic RBD or PD-RBD(+) 
[13, 62]. Because low abundance of SCFA-producing bac-
teria is generally associated with PD and its progression 
[9], the mechanistic explanation about positive relation-
ship between these bacteria and PD necessitates further 
investigation. Citrobacter, another curli-producing gut 
bacterium, was also enriched in PD-RBD(−). However, in 
accordance with a previous study [69], we discovered that 
the gatekeeper residues, crucial for the aggregation and 
cross-seeding efficiency of CsgA [87], exhibited heteroge-
neity across genera in our dataset (Figs. 4B, S6). Notably, 
the CsgA gatekeeper residues in Citrobacter, which dif-
fer from those in Escherichia, confer faster aggregation 
properties; however, they also confer significantly weaker 
cross-interactions with alpha-synuclein [67]. Given the 
limited propensity of Citrobacter CsgA for alpha-synu-
clein cross-seeding, it is unlikely that the enrichment of 
Citrobacter in PD-RBD(-) is associated with intestinal 
alpha-synuclein aggregation.

This cross-sectional study unveils identifying distinct 
microbial profiles in the subgroup of PD with premotor 
RBD, which could contribute to PD pathophysiology via 
biofilm formation, mucin degradation, and UDP-GlcNAc 
synthesis. We also demonstrated a negative correlation 
between the biofilm pathway and UDP-GlcNAc path-
way and validated this in an additional large-scale cohort 
[40]. These findings bear clinical relevance, as they sug-
gest that patients with premotor RBD should be a focus 
for research and therapeutic interventions targeting the 
gut microbiome. This insight may potentially lead to the 
development of new strategies for PD management.

This study contains various limitations. First, the cor-
relation between the gut microbiota composition and PD 
with premotor RBD symptoms does not establish causa-
tion, leaving it uncertain whether they have a direct role 
in PD pathogenesis. We have identified the microbiome 
pathways associated with alpha-synuclein formation 
through functional analysis; future experimental studies 
are required to validate our findings. Second, the study 
was cross-sectional, but we tried to show the microbiome 
patterns of patients with PD according to disease stage. 
Third, the study does not thoroughly address potential 
confounding factors that can influence the gut microbi-
ota, such as lifestyle and comorbidities. Fourth, although 
we identified distinct gut microbiome characteristics 
in patients with PD based on the presence of premotor 
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RBD, the sample size of each subgroup, especially when 
stratified by disease stage, was relatively small. To our 
knowledge, no previous large-scale study has compre-
hensively analyzed and publicly shared data considering 
both premotor RBD status and disease stage in patients 
with PD. Consequently, determining an appropriate sam-
ple size prior to conducting this study was challenging 
given the available data. We therefore conducted a PER-
MANOVA power estimation [61] to assess the adequacy 
of our sample size for key comparisons, which indicated 
that the current sample size provided sufficient power to 
detect moderate effect sizes. To obtain more robust and 
generalizable results, future studies with larger cohorts 
are warranted.

Conclusions
In conclusion, this study revealed that (1) gut microbi-
ome dynamics in patients with PD according to the dis-
ease stage depend on the presence of premotor RBD, and 
(2) distinct gut microbiome characteristics in patients 
with early-stage PD-RBD(+). These distinct character-
istics include increased pathogenic biofilm formation 
and host mucin degradation, which could predispose 
patients to infection and inflammation, thereby contrib-
uting to the exacerbation of PD pathophysiology in the 
gut. Functional analysis revealed a potential link between 
GlcNAc, which downregulates biofilm formation, and PD 
pathogenesis, as demonstrated by negative correlations 
between biofilm formation and UDP-GlcNAc synthesis/
recycling pathways observed in this study and validated 
with data from another large cohort. Overall, our find-
ing underscores the importance of considering disease 
stage and premotor RBD in gut microbiome studies of 
patients with PD. Moreover, we consolidated the mecha-
nisms by which the gut microbiome influences PD patho-
physiology. These findings may provide a foundation for 
developing new therapeutic approaches targeting the gut 
microbiome in PD.
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