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Abstract 

Background  Microbial taxonomic diversity declines with increased environmental stress. Yet, few studies have 
explored whether phylogenetic and functional diversities track taxonomic diversity along the stress gradient. Here, we 
investigated microbial communities within an aquifer in Oak Ridge, Tennessee, USA, which is characterized by a broad 
spectrum of stressors, including extremely high levels of nitrate, heavy metals like cadmium and chromium, radionu-
clides such as uranium, and extremely low pH (< 3).

Results  Both taxonomic and phylogenetic α-diversities were reduced in the most impacted wells, while the decline 
in functional α-diversity was modest and statistically insignificant, indicating a more robust buffering capacity to envi-
ronmental stress. Differences in functional gene composition (i.e., functional β-diversity) were pronounced in highly 
contaminated wells, while convergent functional gene composition was observed in uncontaminated wells. The 
relative abundances of most carbon degradation genes were decreased in contaminated wells, but genes associated 
with denitrification, adenylylsulfate reduction, and sulfite reduction were increased. Compared to taxonomic and phy-
logenetic compositions, environmental variables played a more significant role in shaping functional gene composi-
tion, suggesting that niche selection could be more closely related to microbial functionality than taxonomy.

Conclusions  Overall, we demonstrated that despite a reduced taxonomic α-diversity, microbial communities 
under stress maintained functionality underpinned by environmental selection.
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Introduction
Microorganisms are adversely affected by environmen-
tal stressors such as pH [32], salinity [38], aridity [27], 
temperature [32], antibiotics [14], and heavy metals 
[10], leading to common observations that the number 
of microbial species declines under extreme conditions. 
Most of previous research, however, has predominantly 
focused on microbial taxonomy, neglecting to com-
prehensively assess the entire functional potentials of 
microbial communities. Consequently, it remains elu-
sive whether microbial functional α-diversity mirrors 
the patterns observed in taxonomic α-diversity across 
various environmental stressors. A positive correlation 
between these two measures is reported, implying that 
functional α-diversity may increase with taxonomic 
α-diversity. This assumption received partial support 
from a study on the eastern Tibetan Plateau, where 
aridity stress concurrently reduced both functional and 
taxonomic α-diversities, albeit with a weak correlation 
[42]. Alternatively, functional α-diversity may increase 
rapidly with low α-taxonomic diversity but saturate 
with high taxonomic α-diversity, showing a non-linear 
relationship [28].

While microbial α-diversity is measured by the number 
of taxa and their abundance within a community, micro-
bial β-diversity is defined as the variation in community 
composition between two communities, often expressed 
through pairwise dissimilarity [49]. Strong, positive lin-
ear correlations between taxonomic and functional gene 
β-diversity of microbial communities were observed in 
soil [12] and marine ecosystems [13]. Conversely, envi-
ronmental conditions strongly affected the functional 
gene compositions of global marine microbial commu-
nities but only weakly affected taxonomic composition, 
indicating a decoupling of functionality from taxonomy 
[24, 26]. Similarly, the lack of correlation between micro-
bial functionality and taxonomy was also observed in the 
soil mycobiome of the North American continent [43]. 
This discrepancy may be explained by functional redun-
dancy, in which multiple microbial species perform the 
same ecological function, thereby leading to the observed 
inconsistencies between microbial functionality and 
taxonomy.

Despite significant advancements in environmen-
tal microbiome research, there remains a notable gap 
in generalizable insights into how microbial α- and 
β-diversities, particularly α- and β-functional diversi-
ties, react to various stressors [37]. The Anna Karenina 
Principle, which suggests that disease-associated micro-
bial communities in hosts under stress of disease are 
more dissimilar than those of healthy ones, has recently 
been proposed as a framework for understanding micro-
bial dynamics within the animal [51] or plant hosts [4]. 

However, it remains an open question whether the prin-
ciple holds in aquifer microbial communities under 
stress.

While high levels of heavy metals restrict certain func-
tional properties of bacterial communities [54], few 
research has yet quantitatively assessed functional diver-
sity across a broad spectrum of heavy metal concentra-
tions, where dramatic changes in species diversity are 
evident. We, therefore, selected a range of aquifer sam-
ples spanning from 0 to 17 mg/L in uranium concentra-
tions, 0 to 9000 mg/L in nitrate concentrations, and 3.4 
to 7.3 in pH (Fig. 1). These samples were collected from 
a legacy waste site with deposition of nitric acid-solubi-
lized uranium waste between 1951 and 1983, along with 
mixed metal and organic wastes from other facilities of 
the US Department of Energy. We analyzed microbial 
taxonomic and phylogenetic diversities via 16S rRNA 
gene amplicon sequencing, and functional diversity 
or functional gene diversity via metagenome shotgun 
sequencing. We aimed to test the hypothesis that func-
tional diversity mirrors taxonomic or phylogenetic diver-
sities in response to environmental stressors. Specifically, 
we investigated whether microbial communities in con-
taminated wells exhibit distinct characteristics compared 
to those in uncontaminated wells, providing a testbed of 
the Anna Karenina Principle in aquifer microbial com-
munities under stress. 

Results
Environmental variables
The levels of conductivity, dissolved nitrous oxide (N2O), 
chloride (Cl−), manganese (Mn), and cadmium (Cd) were 
higher in high-contaminated wells compared to other 
wells, while the pH levels were lower (p < 0.05, Table S2). 
Additionally, there were higher concentrations of dis-
solved organic carbon, dissolved carbon dioxide (CO2), 
nitrate (NO3

−), sulfate (SO4
2−), ferrous, potassium (K), 

calcium (Ca), barium (Ba), aluminum (Al), silver (Ag), 
iron (Fe), zinc (Zn), strontium (Sr), and uranium (U) 
along with lower dissolved nitrogen concentrations, dis-
solved oxygen concentrations, and dissolved methane 
concentrations in high-contaminated wells than in other 
wells, though some of these differences were statistically 
insignificant (p > 0.05). The dispersion of environmental 
variables significantly increased with increased contami-
nation (Fig. S1).

Nitrite (NO2
−) concentrations in the supernatant, 

sodium (Na), and magnesium (Mg) concentrations were 
higher in high-contaminated wells than in mid-contam-
inated wells, but not detectable in other wells. Nitrate 
(NO3

−) concentrations in the supernatant, cobalt (Co), 
chromium (Cr), gallium (Ga), lithium (Li), and nickel 
(Ni) were higher in high-contaminated wells compared to 
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mid- and low-contaminated wells, but not detectable in 
uncontaminated wells. Higher concentrations of arsenic 
(As), beryllium (Be), cesium (Cs), copper (Cu), and lead 
(Pb) were found in high-contaminated wells compared to 
low-contaminated wells, but not detected in other wells.

Microbial α‑, β‑, and γ‑diversities
The taxonomic, phylogenetic, and functional α-diversities 
of richness were the lowest in high-contaminated wells, 
while they were the highest in mid-contaminated wells 
(Fig.  2A–C). When compared to uncontaminated wells, 
the taxonomic α-diversities in high-contaminated wells 
were reduced by 85% (p = 0.025), and the phylogenetic 
α-diversities were reduced by 81% (p = 0.018, Fig.  2A, 
B). In contrast, functional α-diversities were not signifi-
cantly different between high-contaminated wells and 
uncontaminated wells, with a smaller decrease of 55% on 
average. Similar pattern were observed in Shannon index 
(Fig. 2D, E), whereas the functional α-diversities in high-
contaminated wells were significantly lower than uncon-
taminated wells.

The taxonomic, phylogenetic, and functional compo-
sitions of microbial communities were well separated 
among uncontaminated, low-, mid-, and high-contam-
inated wells, as indicated by Non-metric Multidimen-
sional Scaling (NMDS, Fig.  3A–C). To further explore 
these differences, three permutational tests of dissimi-
larity (Adonis, MRPP, and ANOSIM) were conducted, 
which revealed significant differences among the four 
groups of wells (p < 0.001, Table  1). Interestingly, the 
microbial taxonomic and phylogenetic compositions 

in high-contaminated wells had lower dispersion com-
pared to the uncontaminated and low-contaminated 
wells (though not statistically significant, p > 0.1 by the 
permutational dispersion test, Fig.  3D), suggesting that 
they were more similar in high-contaminated wells. 
Conversely, microbial functional compositions in high-
contaminated wells displayed the highest community 
dispersion values, indicating a pattern of microbial func-
tional heterogeneity induced in high-contaminated wells 
(p = 0.013 by the permutational dispersion test, Fig. 3D).

When analyzing γ-diversities, the taxonomic, phyloge-
netic, and functional γ-diversities in high-contaminated 
wells were lower than uncontaminted wells, which were 
similar with those of α-diversities. However, a notable 
exception was found in the phylogenetic γ-diversity of 
mid-contaminated wells, which was higher than that in 
uncontaminated wells (Fig. S2).

Bacterial taxa
Proteobacteria was the most abundant phylum in high-
contaminated wells, accounting for 74% of the relative 
abundance (Table S3A). In comparison, the average rela-
tive abundance of Proteobacteria in other wells was only 
21%. Bacterial candidate phylum WPS- 2, also known as 
Eremiobacterota, was higher in high-contaminated wells 
than others, accounting for 12% of the relative abun-
dance. Acidobacteria was also abundant in mid- and 
high-contaminated wells, accounting for 5–6% of the rel-
ative abundance.

Rhodanobacter, a Proteobacteria genus well known 
for denitrification [15], was the most abundant in 

Fig. 1  Geographical location of the study sites. Aquifer samples consist of uncontaminated wells (UC) FW300, FW301, and FW303; 
low-contaminated wells (LC) GW199, GW715, and GW928; mid-contaminated wells (MC) FW215, FW602, and DP16D; high-contaminated wells (HC) 
FW104, FW106, and FW021
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high-contaminated wells (Table S3B), reaching an abun-
dance of 80% in the FW106 well. In comparison, the 
relative abundance of Rhodanobacter in other wells 
was less than 1%. The second most abundant genus in 
high-contaminated wells belonged to Candidatus phy-
lum Eremiobacterota. The third most abundant genus 
in high-contaminated wells was Sulfurifustis, a genus of 
sulfur-oxidizing bacteria affiliated with γ-Proteobacteria 
[22], accounting for 9% of the relative abundance. Other 
genera of sulfur-oxidizing bacteria, including Sulfuricur-
vum and Sulfuritalea, were detected in all wells except 
for high-contaminated ones.

The genera of nitrifying bacteria and archaea were 
abundant in certain wells. Nitrosarchaeum, a genus of 
ammonia-oxidizing archaeon, comprised 19% of rela-
tive abundance in low-contaminated wells but was only 
0.032 to 0.085% in uncontaminated and 0 to 0.364% in 
mid-contaminated wells. The ammonia-oxidizing bac-
teria GOUTA6 was detected in all wells, with a rela-
tive abundance of 5% in mid-contaminated wells. The 
nitrite-oxidizing bacteria (NOB) genus Nitrospira was 

present in all wells except high-contaminated wells 
and accounted for 5% of the relative abundance in low-
contaminated wells. The α-Proteobacteria genus Rey-
ranella, which produces acetic acid during respiration, 
was present in all wells, with the highest relative abun-
dance (1.06 to 14.45%) in low-contaminated wells. The 
methane oxidation bacteria genus Candidatus Methylo-
mirabilis was detected in contaminated wells, with the 
highest relative abundance (0.28 to 14.32%) in mid-con-
taminated wells.

Functional gene categories
We used a shotgun metagenomic assembly approach 
to profile the functional genes. The assembled contigs 
were annotated by the pathway maps of the KEGG 
database, in which most annotated pathways in con-
taminated wells were not significantly different from 
uncontaminated wells (Fig. S3). Therefore, we used 
EcoFun-MAP to further annotate the shotgun metagen-
omic data.

Fig. 2  Microbial α-diversity of aquifer samples from uncontaminated wells (UC), low-contaminated wells (LC), mid-contaminated wells (MC), 
and high-contaminated wells (HC). Diversity metrics are represented as follows: A taxonomic diversity, B phylogenetic diversity, and C functional 
diversity, calculated by richness; and D taxonomic diversity, E phylogenetic diversity, and F functional diversity, calculated by the Shannon index. 
Statistical differences between groups were assessed using ANOVA followed by a post hoc test, with a significance threshold set at p < 0.05. Letters 
indicate significant differences between groups
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Carbon degradation genes
We carried out response ratio analyses to reveal carbon 
degradation genes that were statistically different in rel-
ative abundances among uncontaminated, low-, mid-, 
and high-contaminated wells (p < 0.05, Fig.  4A, Fig. 
S4A). Most carbon degradation genes were decreased 
in contaminated wells, including amyA encoding 
α-amylase that hydrolyzes starch and glycogen, xylA 

encoding xylose isomerase that hydrolyzes hemicel-
lulose, endochitinase and exochitinase genes that 
degrades chitin, rgaE encoding acetylesterase that 
hydrolyzes pectin, vanA encoding vanillate monooxy-
genase that degrades vanillin and lignin, vdh encod-
ing vanillin dehydrogenase that degrades vanillin and 
lignin, and phenol oxidase gene that hydrolyzes lignin. 
Among them, ara encoding l-arabinofuranosidase 
that degrades hemicellulose decreased with increased 

Fig. 3  Microbial β-diversity of aquifer microbial communities for different diversity indices in uncontaminated wells (UC), low-contaminated wells 
(LC), mid-contaminated wells (MC), and high-contaminated wells (HC). Non-metric multidimensional scaling (NMDS) plots based on weighted 
Bray-Curties index for A taxonomic and C functional diversities, normalized weighted Unifrac (phylogenetic Bray-Curties) for phylogenetic 
diversity (B). Dispersion test (D) based on weighted Bray-Curties index for taxonomic and functional diversities, normalized weighted Unifrac 
(phylogenetic Bray-Curties) for phylogenetic diversity. Statistical differences between groups were assessed using ANOVA followed by a post hoc 
test, with a significance threshold set at p < 0.05. Letters indicate significant differences between groups

Table 1  Significance tests of the groundwater microbial communities

Adonis ANOSIM MRPP

F p R p δ p

Taxonomic diversity 1.91 0.001 0.92 0.001 0.85 0.001

Phylogenetic diversity 2.43 0.001 0.57 0.001 0.33 0.001

Functional diversity 2.19 0.001 0.46 0.001 0.57 0.002



Page 6 of 13Fan et al. Microbiome          (2025) 13:106 

contamination, suggesting that its relative abundance 
was sensitive to environmental contamination.

Nitrogen cycling genes
The relative abundances of most denitrification genes, 
including narG encoding nitrate reductase, nirK and 
nirS encoding nitrite reductase, and nosZ encoding 
nitrous oxide reductase, were increased in mid- and 
high-contaminated wells (Fig. 4B, Fig. S4B), which cor-
responded with high nitrate concentrations in those 
wells (Table S2). In contrast, biomarker genes of nitro-
gen fixation (nifH encoding the subunit of the Fe pro-
tein (Kp2) component of nitrogenase) and nitrification 
(amoA encoding ammonia monooxygenase subunit A) 
were decreased in high-contaminated wells (Fig.  4B, 

Fig. S4B), suggesting that functional potentials of nitro-
gen fixation and nitrification were reduced by high 
contamination.

Sulfur cycling genes
Sulfite reduction genes, including cysJ, dsrA, dsrB, and 
sir encoding various sulfite reductase, were increased in 
mid- and high-contaminated wells (Fig.  4C, Fig. S4C), 
consistent with more anaerobic environments in those 
wells (Table  S2). However, sulfur assimilation genes, 
including APS kinase, ATP sulfurylase in protists, and 
ATP sulfurylase, were decreased (Fig.  4C, Fig. S4C), 
which may suggest a stress response to maintain energy 
metabolism at the expense of growth.

Fig. 4  Differences in relative gene abundance of selected genes for 12 aquifer samples functional community based on response ratio. A Carbon 
degradation genes, B nitrogen cycling genes, C sulfur cycling genes, D metal homeostatic genes, E stress response genes, F organic pollutant 
degradation genes, and G electron transfer genes. All genes presented here are significantly different from those in unpolluted wells, judged 
by a 95% confidence interval
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Metal homeostasis genes
Many metal homeostasis genes were increased in con-
taminated wells (Fig. 4D, Fig. S4D), including merE, merF, 
merP, merT, and metC encoding mercury transporter; 
fiu, fhuA, and fecA encoding TonB-dependent recep-
tor that mediates substrate-specific transport across the 
outer membrane; arrA encoding arsenate respiratory 
reductase, arsB encoding an arsenical pump membrane 
protein, and arsM encoding arsenite S-adenosylmethyl-
transferase; pcoA encoding copper resistance protein A, 
cusF encoding Cu cation efflux system protein; mrpA and 
nhaP encoding Na+/H+ antiporter, natB encoding ABC 
transporter sodium permease; yiip_fieF encoding cation-
efflux pump FieF, zntA encoding heavy metal translocat-
ing P-type ATPase. However, the relative abundances 
of several metal homeostasis genes were decreased in 
contaminated wells (Fig.  4D, Fig. S4D), including silC 
and silP encoding heavy metal RND efflux transporter; 
chaA encoding calcium/proton antiporter; chrR encod-
ing chromate reductase; cirA encoding Colicin I receptor, 
fhuE encoding ferric-rhodotorulic acid outer membrane 
transporter, dps encoding DNA-binding ferritin-like pro-
tein; kdpA and kup encoding proteins in potassium trans-
port system; NiCoT and nikC encoding nickel transport 
system proteins; tehB, terC, terD, terZ, and terZD encod-
ing tellurite resistance protein (Fig. 4D, Fig. S4D).

Stress response genes
Most osmotic stress genes, including kdpE encoding 
a transcriptional regulatory protein, mtrA encoding a 
DNA-binding response regulator, ompR encoding an 
osmolarity response regulator, opuE encoding osmoreg-
ulated proline transporter, and proX encoding glycine 
betaine transporter periplasmic subunit, were decreased 
in contaminated wells (Fig. 4E, Fig. S4E). Oxidative stress 
genes were decreased in contaminated wells, including 
katA encoding catalase that catalyzes the hydrogen per-
oxide and soxR encoding redox-sensitive transcriptional 
activator. Two oxygen limitation response genes, narH 
encoding the beta subunit of nitrate reductase and narI 
encoding the gamma subunit of nitrate reductase were 
increased in mid- and high-contaminated wells, which 
suggested microbial response to low dissolved oxygen 
concentration in mid- and high-contaminated wells 
(Fig. 4E, Fig. S4E).

Organic pollutant degradation genes
The relative abundances of most organic pollutant 
degradation genes were decreased in mid- and high-
contaminated wells (Fig.  4F, Fig. S4F), including bphA 
encoding biphenyl dioxygenase subunit alpha that cata-
lyzes the oxygenation of biphenyl, cmcI encoding 3-car-
boxy-cis,cis-muconate cycloisomerase, hbh encoding 

4-hydroxybenzoate hydroxylase that degrades aromatic 
compounds, nagG encoding salicylate 1-monooxygenase 
that catalyzes the decarboxylative hydroxylation of salicy-
late, oxdB encoding phenylacetaldoxime dehydratase 
that degrades styrene, pobA encoding 4-hydroxybenzo-
ate 3-monooxygenase that catalyzes the hydroxylation 
of 4-hydroxybenzoate, tfdA encoding taurine catabolism 
dioxygenase that involves in taurine and hypotaurine 
metabolism.

Electron transfer genes
The relative abundances of certain electron transfer genes 
were increased in high-contaminated wells (Fig.  4G, 
Fig. S4G), including C-type cytochrome genes encoding 
cytochrome c-type biogenesis protein CcmA and CcmF. 
The relative abundances of other electron transfer genes 
were decreased in low-contaminted wells, including 
some C-type cytochrome genes encoding cytochrome c 
class I.

The linkages between microbial communities 
and environmental factors
To explore the relative importance of various factors in 
explaining microbial communities, we carried out partial 
least squares modeling (PLS) followed by variation parti-
tion analysis (VPA, Fig. 5A). Environmental variables and 
geographical distance explained considerable percentages 
of community variations for taxonomic compositions 
(R2 = 0.557, p = 0.001) and phylogenetic compositions 
(R2 = 0.679, p = 0.001), which were substantially lower 
than the explanatory power for functional compositions 
(R2 = 0.897, p = 0.001). In addition, environmental varia-
bles were more important than the geographical distance 
in explaining the composition variations.

To evaluate the importance of individual environmen-
tal variables and geographic distance in PLS models, 
variable influence on projection (VIP) was calculated 
for taxonomic, phylogenetic, and functional diversity 
(Fig. 5B). DIC, DO, and Fe were important for all three 
dimensions of diversities (VIP > 0.10). Ba, Cu, U, and 
sulfide were important for taxonomic and phylogenetic 
diversities (VIP > 0.12), but not important for functional 
diversity. CO2 and Cs were important for phylogenetic 
and function diversities (VIP > 0.66), but not important 
for taxonomic diversity. Furthermore, geographic dis-
tance contributed more to taxonomic and phylogenetic 
diversities than functional diversity.

Discussion
Here, we explored three facets of microbial diversities, 
i.e., taxonomic, phylogenetic, and functional diversi-
ties along a broad spectrum of various contaminants. 
Consistent with the previous finding, [37], we revealed 
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Fig. 5  The linkage between aquifer microbial communities and environmental factors. A Variance partition analysis (VPA) showing relative 
contributions of geographical distance (Geo.) and environmental variables (Env.) to the different diversity indexes based on the PLS method. B 
Variable influence on projection (VIP) values based on the PLS model for different diversity indexes, where VIP value larger than 1 is filled, VIP value 
smaller than 1 is blank
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a marked decrease in taxonomic and phylogenetic 
α-diversities in response to increasing contaminant 
levels (Fig.  2). In contrast, the reduction of functional 
α-diversities was much milder (Fig.  2). Our results also 
indicated an increase in functional composition het-
erogeneity correlating with environmental stressors, a 
pattern not mirrored in taxonomic and phylogenetic 
β-diversities (Fig.  3D). Consistently with findings in 
microbial communities associated with animal and plant 
hosts [4, 51], aquifer microbial functional compositions 
in high-contaminated wells diverged more substantially 
than those in uncontaminated wells (Fig.  3), leading to 
increased dispersion in microbial community compo-
sition. Therefore, the Anna Karenina Principle is not 
limited to host-associated microbial communities, but 
is also applicable to free-living microbial communities 
and functional diversity. This suggests that the principle, 
indicative of microbial responses to environmental stress, 
might be a more widespread phenomenon.

The dispersion of environmental variables increases 
under contamination (Fig. S1). As a result, these variables 
become more dissimilar, leading to greater heterogeneity 
in functional diversity. Our study revealed a significant 
increase in the relative abundance of functional genes 
associated with denitrification and sulfite reduction in 
mid- and high-contaminated wells (Fig.  4B and C, Fig. 
S4B and S4C), concurrent with the increased concentra-
tions of nitrate and uranium. These findings align with 
previous research conducted at the same site [17, 50, 52], 
which suggests that these functional genes are critical for 
heavy metal reduction.

Similar to a previous observation [1], metabolic plastic-
ity, involving various electron donors and acceptors, is a 
common trait in aquifer microorganisms. A wide meta-
bolic repertoire is important in the face of the natural 
environmental perturbations that occur at the Oak Ridge 
site, where frequent storms and snows cause consider-
able water table fluctuations that move the oxic/anoxic 
interface. Consistent with earlier findings at our site [8, 
15], the denitrifying Rhodanobacter, known for its ability 
to immobilize U(VI) under aerobic conditions by form-
ing intracellular uranium–phosphate complexes but not 
for U(VI) reduction [15], was the dominant genus in the 
most contaminated wells characterized by low pH and 
high levels of nitrate and U concentrations (Table  S2). 
Its dominance is likely due to its tolerance to NaCl and 
heavy metals [33]. A previous study has found that Ere-
miobacterota may be involved in Fe (II) oxidation [16], 
which could explain the high relative abundance of the 
genus WPS- 2 in high-contaminated wells with elevated 
ferrous levels (Table S3B).

Sulfurifustis, a genus of sulfur-oxidizing and glu-
tathione-synthesizing bacteria, was enriched in 

high-contaminated wells (Table S3B) because glutathione 
synthesis serves as a mechanism for resisting cadmium 
toxicity [23]. An ammonia-oxidizing archaeon named 
Nitrosoarchaeum was the most abundant genus in low-
contaminated wells (Table S3B), which was also verified 
by more abundant amoA genes in those wells (Fig.  4B, 
Fig. S4B). In contrast, an ammonia-oxidizing bacterium 
named GOUTA6 was the most abundant genus in mid-
contaminated wells (Table S3B). Methanotrophs, includ-
ing the genus Candidatus Methylomirabilis, can use 
methane to transform heavy metals [20], whose unique 
methane oxidation pathway requires both nitrate and 
methane [46]. Accordingly, we found that the abundance 
of Candidatus Methylomirabilis in mid-contaminated 
wells was characterized by the concentrations of nitrate 
and methane (Table S2B). Our results revealed decreased 
calcium transporters in contaminated wells, suggesting 
a microbial strategy to mitigate uranium toxicity, similar 
to protective mechanisms in plants [39] and yeast [36]. 
Additionally, lower dissolved organic carbon (DOC) in 
low-contaminated wells may influence metal bioavailabil-
ity and microbial stress responses, as DOC complexation 
reduces metal uptake [45].

Functional redundancy may also explain the Anna 
Karenina Principle. Functional redundancy was termed 
as the coexistence of different species capable of per-
forming the same biochemical functions, which could 
explain why the taxonomic and phylogenetic α-diversities 
decreased more noticeably than functional α-diversity 
under stress (Fig.  2). Functional diversity showed the 
lowest dispersion in uncontaminated wells because of the 
functional redundancy. In contrast, the dispersion values 
of functional diversity increased as the functional redun-
dancy decreased with the contamination levels, whereas 
the dispersion values of taxonomic and phylogenetic 
diversities remained relatively unchanged (Fig. 3).

Both deterministic and stochastic processes contribute 
to the increased dissimilarity in stressed microbial com-
munities, though the Anna Karenina Principle is mainly 
based on the important role of stochastic processes in 
disrupting normal community composition [4, 51]. The 
variability in key biogeochemical conditions (e.g., DIC, 
DO and Fe, Fig. 5B) emerged as important determinants 
of groundwater community compositions, which affected 
microbial fitness. A recent study revealed that stochas-
tic processes, especially dispersal limitation, played an 
important role in shaping groundwater microbial com-
munities [29], but the relative importance of stochastic 
processes decreased as contamination increased, which 
may explain why the Anna Karenina Principles was 
not observed in taxonomic and phylogenetic diversi-
ties. Other factors, including biotic interactions among 
community members and stochastic processes (e.g., 



Page 10 of 13Fan et al. Microbiome          (2025) 13:106 

ecological drift and dispersal limitation), could also play 
important roles in shaping community assembly [9, 55]).

Our findings emphasize the importance of intergrat-
ing functional gene into bioremediation strategies. 
Specific functional gene markers may serve as reli-
able fingerprints of contamination, providing a more 
accurate indication of pollutant types and degradation 
potential. These functional indicators could be lever-
aged to develop predictive models for contamination 
assessment and ecosystem restoration, improving the 
precision and efficacy of bioremediation efforts.

Conclusion
In this study, we assayed biological and geochemi-
cal diversities in a mixed waste-contaminated aqui-
fer at Oak Ridge, TN, USA. Our results showed that 
environmental stressors have significant impacts on 
microbial diversity, particularly on taxonomic and 
phylogenetic diversities. The observed decrease in 
functional α-diversity was modest, indicating that 
the functional traits of the microbial communities 
had a better buffering capacity against environmental 
stress. Our results of functional heterogeneity (Fig. 3) 
explained the often low efficacy in treating in  situ 
groundwater contamination, which is costly and of 
large scale.

Understanding microbial functional responses in the 
stress environment is a central topic of microbial ecol-
ogy. Therefore, our study is a useful asset for determin-
ing the critical factors linking community taxonomy 
to functions, which contribute to the development of 
accurate hydrogeochemical models that aid in assess-
ing environmental treatments and evaluating risk 
management [21]. The functional composition may be 
a sensitive and informative metric for evaluating the 
responses of microbial communities to environmental 
stress, which could inform the development of more 
effective and efficient bioremediation strategies for 
contaminated sites by providing a better understand-
ing of the functional traits of microbial communities 
effective in degrading specific contaminants. Further-
more, our study demonstrated the importance of con-
sidering microbial functionality when evaluating the 
health of ecosystems, as the functional traits of micro-
bial communities play a crucial role in maintaining 
ecosystem processes. Overall, our study contributes to 
a growing body of research that seeks to understand 
the functional response of microbial communities to 
environmental stress, and showed that microbial func-
tionality should be taken in account in environmental 
management and risk assessment.

Methods
Study site and sampling
We conducted this study at the Department of Energy’s 
(DOE) Oak Ridge FRC site in Oak Ridge, Tennessee. The 
groundwater at this location is tainted with various con-
taminants including radionuclides (such as uranium and 
technetium), nitrate, sulfide, and others, predominantly 
originating from the erstwhile S- 3 waste disposal ponds. 
Groundwater samples were obtained from 12 repre-
sentative wells along a gradient of various contaminants 
during winter 2012 and spring 2013 (Fig.  1, Table. S1): 
uncontaminated wells (UC) including FW300, FW301, 
and FW303 (FW305 for metagenome shotgun sequenc-
ing due to FW303 was not easy to access); low-contami-
nated wells (LC) including GW199, GW715, and GW928 
with nitrate concentrations less than 2 mg/L, uranium 
concentrations less than 0.01 mg/L, and neutral pH (6.5–
7.2); mid-contaminated wells (MC) including FW215, 
FW602, and DP16D with nitrate concentrations between 
5.5 and 1471 mg/L, uranium concentrations between 0.1 
and 1.5 mg/L, and neutral pH (6.5–6.8); high-contami-
nated wells (HC) including FW104, FW106, FW021 with 
nitrate concentrations between 2692 and 11,648 mg/L, 
uranium concentrations between 3.8 and 55 mg/L, and 
low pH (3–5.2).

Geophysical and geochemical analyses
The groundwater properties of temperature, pH, dis-
solved oxygen (DO), conductivity, and redox were meas-
ured by an In-Situ Troll 9500 system (In-Situ Inc., CO, 
USA). U.S. EPA methylene blue method (Hach; EPA 
Method 8131) and the 1,10-phenanthroline method 
(Hach; EPA Method 8146) were used to measure sulfide 
and ferrous iron concentrations, respectively. The con-
centrations of dissolved gases (N2, O2, CO2, CH4, and 
N2O) were determined using an SRI 8610 C gas chroma-
tograph (GC) with argon as the carrier gas. The method 
was derived from EPA RSK- 175 and United States Geo-
logical Survey (USGS) Reston Chlorofluorocarbon Labo-
ratory protocols. Concentrations of dissolved organic 
carbon (DOC) and dissolved inorganic carbon (DIC) 
were ascertained using a Shimadzu TOC-V CSH ana-
lyzer (Tokyo, Japan), following the EPA Method 415.1. 
Anion concentrations, including bromide, chloride, 
nitrate, phosphate, and sulfate, were quantified using a 
Dionex 2100 system equipped with an AS9 column and 
a carbonate eluent, in accordance with U.S. EPA Meth-
ods 300.1 and 317.0. The levels of metals and trace ele-
ments present in the groundwater were assessed using 
an inductively coupled plasma/mass spectrometry (ICP-
MS) instrument (Elan 6100), employing a technique akin 
to EPA Method 200.7.
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Amplicon and metagenomic sequencing
The DNA extraction method was described in a previ-
ous study [41]. The phasing amplicon sequencing (PAS) 
method [48] was used to amplify the V4 region of 16S 
rRNA genes and the samples were sequenced on an Illu-
mina MiSeq platform. The primers are 515 F (5′-GTG​
CCA​GCMGCC​GCG​GTAA- 3′) and 806R (5′-GGA​CTA​
CHVGGG​TWT​CTAAT- 3′). The sequencing data were 
processed by Qiime2 (version 2019.7). After barcode and 
primer sequences were trimmed with zero maximum 
error, sequencing data were processed by DADA2 to iden-
tify exact amplicon sequence variants (ASV), followed by 
the default settings. The ASVs were identified taxonomi-
cally based on the silva- 132–99–515–806-nb-classifier. 
The ASV sequences were then used to build a phyloge-
netic tree by FastTree [34, 35]. The ASV table was pro-
cessed by removing reads classified at the Order level as 
“Chloroplast” and “Mitochondria.” To ensure comparabil-
ity, all samples were rarefied to 28,322 sequences, stand-
ardizing sequencing depth for downstream analyses.

We used the KAPA Hyper Prep Kit (KR0961) to con-
struct the metagenomic sequencing libraries following 
the manufacturer’s instructions, and the samples were 
sequenced using an Illumina HiSeq 3000 sequencer. The 
read-based metagenomic data analysis was performed 
using an internal pipeline (http://​iegst1.​rccc.​ou.​edu:​
8080/​ecofu​nmap/) following the guidelines from [40]. 
For assembly-based analysis, metagenomic reads were 
preprocessed using BBTools for removing adaptor, trim-
ming and filtering reads, and sequencing error correc-
tion [6]. The pre-processed reads were assembled with 
Metaspades [30]. Genes were predicted from scaffolds 
> 1 kbp using the Prodigal [18]. The gene abundance was 
estimated as TPM [53]. Genes functions were annotated 
using the Kofamsan [19]. Species-level quantitative taxo-
nomic profiling was performed using MetaPhlAn4 [5].

EcoFun‑MAP
EcoFun-MAP (Ecological Function Oriented Metagen-
omic Analysis Pipeline) is a bioinformatics tool designed 
for the functional analysis of shotgun metagenomic 
sequencing data with an ecological focus. It provides 
an efficient framework for annotating functional genes 
relevant to key biogeochemical processes, such as car-
bon, nitrogen, sulfur, and phosphorus cycling, as well as 
antibiotic resistance, metal homeostasis, and microbial 
stress responses. The pipeline is based on a gene-centric 
paradigm, utilizing a hierarchical reference database 
that categorizes functional genes according to their 
ecological roles. It employs a combination of Hidden 
Markov Models (HMMs), DIAMOND-based sequence 

alignment, and probabilistic modeling to enhance both 
speed and accuracy in gene annotation [40].

Statistical analyses
We used richness and Shannon index to represent micro-
bial α-diversity and analysis of variance (ANOVA) to 
compare the difference between each group. The assump-
tions of normality and homogeneity of variances were 
validated prior to ANOVA tests using the Shapiro–Wilk 
test and Levene’s test, respectively. Post hoc pairwise 
comparisons were conducted using Tukey’s Honest Sig-
nificant Difference (HSD) test to identify specific group 
differences when ANOVA results were significant (p < 
0.05). To control for multiple comparisons and reduce 
the risk of Type I errors, Bonferroni corrections were 
applied where appropriate. Non-metric multidimensional 
(NMDS) and permutation test of multivariate homoge-
neity of groups dispersions [2] were used for microbial 
β-diversity, taxonomic and functional β-diversity were 
measured by Bray–Curtis dissimilarity [7] and phylo-
genetic β-diversity were measured by UniFrac [25]. We 
used permutation test of multivariate homogeneity of 
groups dispersions [2] based on the Euclidean distance 
for environmental variables. The statistical significance 
of the effects of contaminations on β-diversity was tested 
by multi response permutation procedure (MRPP) [47], 
permutational multivariate analysis of variance (Adonis) 
[3], and analysis of similarities (Anosim) [11, 47] by using 
function “mrpp,” “adonis,” and “anosim” in R package 
“vegan,” respectively [31]. The response ratio was calcu-
lated using an internal R packcage “ieggr” based on 95% 
confidence intervals. We used a partial least squares 
(PLS) model to detect the relationships between envi-
ronmental variables and geographical distance for each 
diversity index. Basically, each optimal PLS model is 
selected through a forward selection process from all 
factors that could influence the dependent variable. This 
selection is based on predictive performance, taking into 
account the proportion of variation explained (R2Y) and 
the statistical significance of the model (P values for R2Y 
and Q2Y less than 0.05). Notably, a significant Q2Y aids in 
preventing overfitting of the model. To visualize the rele-
vant associations, we used the variance partition analysis 
(VPA) and the software Inkscape 1.3 (https://​inksc​ape.​
org/). The PLS-related analysis was performed using the 
R package “ropls” [44].
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