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Abstract 

Background The human microbiome is transmissible between individuals, including pathogens and commen-
sals with metabolic and immune-modulating effects, which could influence susceptibility, severity, and outcomes 
of both infection and non-infection diseases. However, limited studies of respiratory microbiome transmission 
within populations have been conducted. Herein, we performed species- and strain-level metagenomic analy-
ses on oropharyngeal (OP) swabs from 1046 healthy urban dwellers across 13 districts, including 111 households 
with at least two cohabitants, to elucidate the transmission dynamics of the respiratory microbiome within house-
holds and communities.

Results We found that geographic districts accounted for the greatest variation in the OP microbiome, with unre-
lated individuals from the same district showing greater microbiome similarity and higher strain-sharing rates 
than those from different districts. Cohabitants, especially spouses and siblings, exhibited similar microbial abun-
dances and shared more strains, with 16.7% (IQR 0.0–33.3%) of strains shared among cohabitants, compared to 0.0% 
(IQR 0.0–11.1%) in non-cohabiting pairs (p < 0.05). Both respiratory commensals and opportunistic pathogens were 
shared among cohabitants. In contrast, no evidence of vertical transmission was detected between mother–off-
spring pairs. Additionally, the OP microbiome contained diverse antibiotic resistance genes (ARGs), with 15.0% 
linked to mobile genetic elements (MGEs) or plasmids; the flanking sequences of these ARGs were more conserved 
across species than those of non-MGE-associated ARGs, suggesting horizontal transfer of ARGs among respiratory 
microorganisms.

Conclusions In summary, we characterized the transmissible nature of the OP microbiome and the risk of ARG dis-
semination among respiratory microorganisms. These findings underscore the role of respiratory microbes and ARGs 
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exchange in shaping the microbiome of healthy populations and emphasize their relevance to public health strate-
gies for respiratory health management.

Keyword Metagenomics, Respiratory microbiome, Microbiome transmission, Antibiotic resistance genes 
dissemination

Introduction
The airway mucosa is colonized by various bacteria, 
fungi, viruses, and archaea that comprise the respira-
tory microbiome, and its composition and role in res-
piratory health have been preliminary revealed [1, 2]. 
The upper respiratory microbiome serves as a gatekeeper, 
defending against the invasion of respiratory pathogens 
through direct competition and interaction with the host 
immune response [3]. Previous studies reported that the 
oropharyngeal (OP) microbiome impacts the disease 
progression of COVID- 19 patients, and the susceptibil-
ity to influenza virus infection [4–7]. Moreover, oppor-
tunistic pathogens asymptomatically colonize the upper 
respiratory tract, such as Streptococcus pneumoniae and 
Haemophilus influenzae, which could be the source of 
respiratory tract infection [8]. Understanding the eco-
logical characteristics and influencing factors of the OP 
microbiome could help uncover mechanisms underlying 
respiratory diseases and inform the development of novel 
targeted therapies.

Recent studies reveal that the OP microbiome is pri-
marily composed of Streptococcus, Neisseria, Veillonella, 
and Prevotella, and is influenced by mode of delivery, 
lifestyle, cigarette smoking, age, and air pollutants [9–13]. 
Additionally, intimacy between individuals significantly 
affects OP microbiome composition, which may result 
from the socially transmissible nature of the human 
microbiome [14–17]. For instance, the upper respiratory 
microbiomes of children resemble those of their clos-
est siblings, which may explain the associations between 
asthma and infectious disease risk among siblings [18]. 
Adults with regular contact with children exhibit an OP 
microbiota enriched in pathobionts typically carried by 
children [19]. However, previous findings largely rely 
on 16S rRNA gene sequencing [18, 19], which has lim-
ited resolution and may yield inaccurate conclusions. An 
in-depth analysis of the microbiome at the species and 
strain levels is essential for making more accurate infer-
ences about the extent and specific components involved 
in transmission between individuals.

The human microbiome serves as a reservoir of anti-
biotic resistance genes (ARGs), which can be transmit-
ted among microorganisms, via plasmids, phages, outer 
membrane vesicles, and transposons, thereby facilitating 
the spread of antimicrobial resistance [20]. Genomic and 
metagenomic data have proven invaluable for profiling 

ARGs in individual microorganisms and entire micro-
biota. While the prevalence and transmission of ARGs 
have been investigated in healthy populations’  gut and 
oral cavities [21], research on airway resistome in healthy 
individuals remains limited.

To resolve the aforementioned questions, we con-
ducted high-resolution metagenomic sequencing on OP 
samples from 1046 individuals. The study aims to inves-
tigate: (1) the composition of the OP microbiota, as well 
as the prevalence and distribution of antibiotic resistance 
genes (ARGs) and virulence factors (VFs) in healthy indi-
viduals; (2) the demographic and environmental variables 
that correlated with the OP microbiota; (3) the possibility 
of microbial transmission between cohabiting members; 
(4) the possibility of ARGs transmission between respira-
tory microorganisms. In summary, our analyses revealed 
significant correlations between the OP microbiome and 
various factors, including district, age, smoking, and the 
concentrations of  PM10,  NO2. Additionally, there are 
higher species and strain-level similarities in the oro-
pharyngeal microbiota among cohabiting members, par-
ticularly those with closer contact, suggesting potential 
microbiome transmission. Furthermore, our findings 
indicate that ARGs may transfer between different OP 
microorganisms via mobile genetic elements, underscor-
ing the risk of disseminating antimicrobial resistance.

Results
Overview of the samples and sequencing data
Oropharyngeal (OP) swabs were collected from 1046 
participants across 13 districts in Wuhan (with an area 
of 3280  m2), China (Fig. 1A). Among them, 289 partici-
pants were from 111 cohabiting households, with 2–5 
individuals per household. All participants reported no 
respiratory symptoms in the month before sampling. 
Demographic, exposure, and medical data were col-
lected (Supplementary Table S1, Fig. S1A). Environmen-
tal exposure data (concentrations of air pollutants  NO2, 
 PM1,  PM2.5, and  PM10) were obtained from the China 
High Air Pollutants datasets.

Metagenomic sequencing was performed on all sam-
ples and 99 negative controls (NCs). The median pro-
portion of human DNA reads of OP samples was 83.3% 
(interquartile range (IQR) 66.1–91.5%). The median 
number of quality-controlled reads of OP samples was 
2,144,301 (IQR 910,656–5,028,742), and the median 



Page 3 of 14Ren et al. Microbiome          (2025) 13:115  

estimated metagenome coverage, as assessed by Nonpa-
reil, was 74.5% (IQR 58.2–86.3%, Fig. S1B), a proportion 
that is sufficient for adequate assembly and detection of 
differentially abundant genes, as described in the Non-
pareil method paper [22]. After decontamination and 
removing library batch effects, 244 species with a relative 
abundance above 1% in at least one sample were retained 
for downstream analysis.

Composition of OP microbiome and its associated factors
The predominant microbes, found in over 95% of individ-
uals with a relative abundance greater than 0.1%, includ-
ing Neisseria subflava, Prevotella intermedia, Prevotella 
melaninogenica, Haemophilus parainfluenzae, Schaalia 
odontolytica, Veillonella atypica, Veillonella dispar, Veil-
lonella parvula, Campylobacter concisus, Fusobacterium 

nucleatum, Myoviridae sp., and Siphoviridae sp., collec-
tively comprised 43.2% of the microbial reads (IQR 36.4–
50.4%). No distinct microbiota subtypes were observed 
(Fig.  1B, Fig. S1C). A total of 444 ARGs were identified 
in 603 samples, including macrolide-lincosamide-strep-
togramin (MLS), multi-drug, beta-lactams, tetracyclines, 
fluoroquinolones and aminoglycosides resistance genes 
(Fig. S1C). Additionally, among 1941 VFs found across 
632 samples, immune modulation-related VFs were the 
most prevalent category, potentially aiding commensal 
bacteria in adapting to the host immune environment 
and establishing colonization in the oropharyngeal niche 
(Fig. S1C). Besides, we found that the number of ARGs 
and VFs showed a significant positive correlation, sug-
gesting a potential co-selection mechanism (Spearman’s 
ρ = 0.47, p < 0.001, Fig. S1D).

Fig. 1 Overview of oropharyngeal microbiome and its associated factors. A Schematic diagram for data collection. Geographic heatmap showing 
the sample numbers from the 13 districts of Wuhan, China. HP: Huangpi, XZ: Xinzhou, DXH: Dongxihu, JH: Jianghan, JA: Jiangan, QS: Qingshan, 
QK: Qiaokou, HY: Hanyang, WC: Wuchang, HS: Hongshan, CD: Caidian, HN: Hannan, JX: Jiangxia. B Redundancy analysis (RDA) plot of species 
composition of 1046 OP samples, colored by dominated genus in each sample. The upper left corner of the figure: top 10 species of explaining 
species compositional variation. The length and the color of each species segment represent the proportion of explained variation by that species, 
and the direction of the segments was determined by species coordinates. C Variation (adjusted  R2) explained by each metadata to metagenomic 
profiles using univariate distance-based redundancy analysis (db-RDA). Only significant results are shown (FDR < 0.05) D District-specific species. 
The species were identified by comparing the relative abundance of each species in one district against that in all other districts using the Wilcoxon 
rank-sum test (two-sided). The y-axis of the plot represents the logarithmic q value (FDR adjusted p value) of the test, and the x-axis displays 
the log2 transformation of the fold change in the relative abundance of the tested microbe, comparing one district to all other districts. The points 
were colored by districts and the size represents the relative abundance of the species in the corresponding district. ‘NS’ denotes not significant. E 
Heatmap displaying the top 10 strongest associations between individual species and metadata, calculated by multivariate MaAsLin2, the effect 
size is represented by the z-score value of the coefficient from the model, and q values (FDR adjusted p value) < 0.05 are indicated with plus and 
minus signs to reflect the directionality. F Distribution of the relative abundance of five age-related opportunistic pathogens across age. The 
y-axis denotes the proportion of participants younger than the age of the x-axis, who had the relative abundance of the species above its median 
in the population



Page 4 of 14Ren et al. Microbiome          (2025) 13:115 

Distance-based redundancy analysis (dbRDA) revealed 
that geographic districts accounted for the largest pro-
portion of variance in OP microbiome, followed by occu-
pation, age, smoke status, and  NO2 concentration, each 
contributing to over 0.5% of the variance of at least one 
microbial profile (Fig. 1C). The OP microbiome compo-
sition significantly differed among each pair of districts, 
with Hanyang and Hannan showed the greatest deviation 
from other districts (p < 0.05, pairwise PERMONAVA, 
Fig. S2 A, Supplementary Table  S2). Hanyang had the 
highest number of species with differential abundances, 
enriched with species, such as Schaalia odontolytica, and 
Rothia mucilaginosa (Fig.  1D). Notably, occupation and 
the concentration of  NO2,  PM1,  PM2.5, and  PM10, which 
were correlated with the district (Fig. S1A), could explain 
1.02% to 9.55% of the variance elucidated by geography 
(Variation partitioning analysis, Fig. S2B). Moreover, the 
OP microbiome showed greater similarity within the 
same sub-district (Fig. S2C), with sub-districts explain-
ing a substantial variance of the OP microbiota in three 
districts (Fig. S2D), possibly due to the aforementioned 
district-associated factors (Fig. S2E).

Neisseria species, including opportunistic pathogens 
N. meningitidis and N. gonorrhoeae, were positively 
associated with age. In contrast, S. pneumoniae and H. 
influenzae were negatively correlated with age (Fig. 1E). 
Specifically, 34 of 35 (97%) participants under 5 years 
old carried S. pneumoniae with a relative abundance 
greater than 0.1%, compared to 57% (571/1011) of par-
ticipants older than 5 (p < 0.001, Fisher’s exact test, two-
sided, Fig.  1F). Additionally, four Treponema species 
were enriched in individuals with chronic lung disease 
(CLD), including T. denticola, which was reported to be 
more abundant in COPD patients [23]. N. subflava and 
N. flavescens were significantly reduced in samples from 
individuals with hypertension, with N. subflava known 
as a hypertension biomarker [24]. Schaalia odontolytica 
showed a positive correlation with  NO2 and  PM10 con-
centration, while several Leptotrichia species exhibited 
a negative correlation with  NO2 concentration. Smoking 
was associated with decreased abundance of Neisseria 
species, consistent with findings from previous studies 
[11, 25].

At the functional level, multiple fatty acids and lipid 
biosynthesis pathways were correlated with age (Fig. 
S3A). PWY- 5100 (pyruvate fermentation to acetate and 
lactate), largely contributed by Streptococcus and Veil-
lonella, was enriched in participants with CLD and 
SARS-CoV- 2 antibody positivity and showed a posi-
tive correlation with  NO2 and  PM10 concentrations (Fig. 
S3B). Additionally, the multi-drug resistance gene lsaC 
was enriched in participants with CLD, while two tetra-
cycline resistance genes and several capsule genes were 

enriched in samples from individuals with diabetes (Fig. 
S3C).

No correlation between OP microbiome and SARS‑CoV‑ 2 
infection history
Among the participants, 165 (15.8%) tested positive for 
SARS-CoV- 2 antibodies, indicating prior infection dur-
ing the first SARS-CoV- 2 epidemic wave in Wuhan 
(approximately 1–4 months before sample collection). 
These individuals were from 145 households, with 48 of 
them having at least one member who tested negative for 
SARS-CoV- 2 antibodies and showed no symptoms. This 
allowed us to explore the potential relationship between 
the OP microbiota and susceptibility to SARS-CoV- 2, or 
the OP microbiome alterations post-COVID- 19.

First, we found no significant differences in OP micro-
biota between antibody-positive participants and their 
antibody-negative cohabitants (Fig. S4A and B). Addi-
tionally, no individual microbial features were signifi-
cantly correlated with SARS-CoV- 2 antibody positivity, 
as estimated by MaAsLin2 and logistic regression analy-
sis, which adjusted for age, gender, smoking status, con-
centrations of  NO2 and  PM10, and underlying diseases, 
utilizing an unpaired comparison strategy (all antibody-
positive participants vs. all antibody-negative cohabit-
ants) (FDR > 0.05). Moreover, the paired comparison 
strategy (one antibody-positive participant matched with 
one antibody-negative cohabitant) also failed to identify 
differential features regarding SARS-CoV- 2 antibody 
positivity (FDR > 0.05, paired Wilcoxon-sum rank test, 
two-sided).

Cohabitants have similar OP microbiome
We found that participants who live together have more 
similar microbiota composition, functional pathways, 
and ARGs compositions (Fig. 2A), with spouses exhibit-
ing the greatest similarity among all family relationships 
(Fig. 2B). The relative abundance of individual microbial 
features, including 42 species, 59 pathways, 14 ARGs, and 
4 VFs, showed a significant positive correlation among 
cohabitants (Fig.  2C, Supplementary Table  S3), imply-
ing possible transmission of microorganisms between 
cohabitants. These features involved commensals (e.g., 
N. subflava and P. melaninogenica), opportunistic path-
ogens (e.g., F. nucleatum, T. denticola, and S. pneumo-
niae), pyruvate fermentation pathway (PWY- 5100), as 
well as ten ARGs potentially resistant to tetracyclines. 
In contrast, no such correlation was detected among 
non-cohabiting pairs, and the correlation coefficients 
were significantly higher among cohabitants compared 
to those calculated from an equivalent number of non-
cohabiting pairs (p < 0.05, Permutation test, Fig. S4C, 
Supplementary Table S3). In addition, we observed that 
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the correlation between cohabitants varied across differ-
ent relationships. For instance, P. melaninogenica, and 
S. oralis exhibited more similar abundance in siblings, 
whereas F. nucleatum and T. denticola showed higher 
correlations among spouses (Fig. 2C, Fig. S4D).

OP microorganisms transmitted between cohabitants
The potential for transmission of microorganisms 
between cohabitants was further investigated at the 
strain level. Genotypes (sequences of the marker genes) 
of 39 species present in at least one cohabiting pair were 
profiled by StrainPhlan for each sample [26]. Hamming 
distances between genotypes of the same species were 
calculated for 141 cohabiting pairs, with an average of 
four species per pair (Fig. S5A). Overall, genotype dis-
tances were significantly lower between cohabitants 
compared to non-cohabiting pairs (p < 0.05, Kolmogo-
rov–Smirnov test, two-sided, Fig. 3A). Specifically, 29.4% 
of genotype distances between cohabiting pairs were 
below 0.025, compared to 8.7% in non-cohabiting pairs 
(p < 0.05, Fisher’s exact test, two-sided). The genotype 
distances in 5 species were significantly lower between 
cohabiting pairs than between non-cohabiting pairs (p < 
0.05, Wilcoxon rank-sum test, two-sided, Fig. 3B). More-
over, permutation tests revealed that the frequency of 
the two closest genotypes originating from cohabiting 
pairs was significantly higher than expected by random 
chance for 20 species (see Methods, Fig. S6), with P. sp. 
oral. taxon 306 exhibited the highest frequency (66.7%, 
Fig.  3C). Additionally, gene synteny of the same species 
was more homologous between cohabiting pairs than 
non-cohabiting pairs (p < 0.05, Kolmogorov–Smirnov 
test, two-sided, Fig. 3D).

By applying species-specific hamming distance cutoffs 
to define the same strain (see details in the “Methods” 
section, Fig. S5B), we identified 116 putative transmission 
events (shared strains) within households. The median 
strain transmission rate (STR) among cohabiting pairs 
with at least five comparable species was 16.7% (IQR 
0.0–33.3%), significantly higher than the 0.0% (IQR 
0.0–11.1%) in non-cohabiting pairs (p < 0.05, Wilcoxon 
rank-sum test, two-sided). Non-cohabiting pairs from the 
same district (median STR 0.0%, IQR 0.0–16.7%) shared 

more strains than those from different districts (median 
STR 0.0%, IQR 0.0–8.5%, p < 0.05, Wilcoxon rank-sum 
test, two-sided). Additionally, 65.9% of cohabiting pairs 
and 27.2% of non-cohabiting pairs, including those resid-
ing in the same or different districts, shared at least one 
strain (p < 0.05, Fisher’s exact test, two-sided). Among 
non-cohabiting pairs, those residing in the same district 
were more like to share strains than those in different 
districts (35.2% vs. 25.7%, p = 0.045, Fisher’s exact test, 
one-sided).

Interestingly, the transmission rate of the same spe-
cies in OP (this study) was positively correlated with that 
reported in the oral cavity [17] (Fig.  3E). The reliability 
of defining the same strain using the hamming distance 
was further supported by gene synteny analysis, as the 
putative same strain exhibited a higher synteny score 
(Fig. S5C). Additionally, we found that the transmission 
of microorganisms was not correlated with their abun-
dances, while species within the same genus tended to be 
transmitted together (Fig. S5D–F). This may be because 
species within the same genus tend to colonize proximal 
niches, facilitating co-transmission, or due to the limita-
tions in species-level resolution within the same genus.

The genotype distances between cohabitants of the 
same species varied across different familial relation-
ships, with siblings and spouses exhibiting the highest 
similarity (Fig.  3F and Fig. S5G). Spouses also showed 
the highest proportion of putative microorganism trans-
missions, followed by siblings and parent–child relation-
ships (Fig. 3G). Notably, the genotype distances between 
father-child and mother–child of the same species were 
lower than those between unrelated non-cohabitating 
pairs (Fig. S5H). However, there was no significant dif-
ference in genotype distances between father-child and 
mother–child pairs, regardless of the child’s age (Fig. 
S5I), suggesting no strong evidence for vertical transmis-
sion of microorganisms.

OP microbiome as a reservoir of antibiotic resistance genes 
with horizontal transfer potential
After de novo assembly, we identified 6208 ARG-car-
rying contigs (ACCs) in 906 samples. Of these, 4827 
ACCs from 872 samples were assigned species labels, 

Fig. 2 Similarity of OP microbiome between cohabitants. A Density plots illustrating the distribution of distances between cohabitation 
and non-cohabitation pairs based on different microbiome features. The dotted lines represent the median values. ***: p < 0.001 (Wilcoxon 
rank-sum test, two-sided). B Comparison of the distance between different types of family relationships based on different microbiome features. 
The central line indicates the median. The lower and upper hinges indicate the first and third quartiles. The lower and upper whiskers extend 
from the hinge to the smallest and largest values no further than 1.5 times the interquartile range from the hinge. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. In A and B), the distance of species and pathway compositions was calculated based on the Aitchison distance, while the distance 
of ARG and VF compositions was the Horn-Morisita distance. C Circular heatmap illustrating the 43 species with abundance correlated 
between cohabitation pairs. G-C denotes grandparent-child pairs, and P–C denotes parent–child pairs. ‘*’ represents FDR adjusted p < 0.05

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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with a median length of 4886 base pairs (IQR 2360–
11,353 bp). First, we found that many species harbored 
multiple ARGs, and most ARGs were shared among 
different species (Fig. 4A). For instance, the most abun-
dant ARGs, conferring MLS resistance, were detected 
in most respiratory commensals and opportunistic 
pathogens such as S. pneumoniae. Tetracyclines resist-
ance genes were found in Prevotella and Rothia spe-
cies, while beta-lactams resistance genes were mostly 
identified in Neisseria, Prevotella, and Capnocytophaga. 
Among opportunistic pathogens, S. pneumoniae har-
bored the highest number of ARGs, including those 
conferring resistance to MLS, aminoglycoside, and 
Beta-lactams antibiotics. This observation is unlikely to 
be attributed to a higher abundance of S. pneumoniae, 
as its abundance was comparable to other bacteria in 
the samples (Fig. 4B).

ARGs can be transmitted between different microor-
ganisms by hitchhiking with mobile genetic elements 
(MGEs) or located on plasmids. We found that 15.0% 
of the ACCs contained MGEs within 5000 base pairs 
upstream or downstream ARGs, or the ACCs origi-
nated from plasmids (Fig. S7A). We identified Tn916 
as the most frequent MGE adjacent to ARGs on ACCs 
(41.1%), followed by transposase (18.6%), qacEdelta 
(12.4%), integrase (12.0%), and tnp-ISCR (7.8%). This 
finding highlights Tn916 as the predominant element 
that may facilitate ARG dissemination in the oropharyn-
geal microbiome. ARGs with higher putative mobility 
(more frequently linked to MGEs) were detected across 
a broader range of microbial hosts (Fig.  4C), suggesting 
that MGEs may facilitate horizontal transfer of ARGs 
among microorganisms in the oropharynx. Beta-lactams 
resistance genes, 31.2% of which flanked by MGEs or 

Fig. 3 Possible OP microbiome transmission between cohabitants. A Distribution of genomic distances between genotypes in cohabitation 
and non-cohabitation pairs. Genomic distance was calculated using the Hamming distance, which measures the proportion of differing 
positions between two genotypes. The p value was calculated by Kolmogorov–Smirnov (K-S) test (two-sided). B Box plots showing the hamming 
distances between genotypes in cohabitation and non-cohabitation pairs across different species. P values were obtained using the Wilcoxon 
rank-sum test (two-sided). C Phylogenetic tree of genotypes of Prevotella sp. oral taxon 306 from different individuals. The color of the tip points 
represents different families, and close pairs from the same household are marked with triangles and connected by dotted lines, all of which were 
defined as strain transmission events in the following analysis. D Distribution of genomic synteny scores between genotypes in cohabitation 
and non-cohabitation pairs. The p value was calculated by Kolmogorov–Smirnov (K-S) test (two-sided). E Correlation between the transmission 
rate of species in OP samples and oral samples. F Box plots displaying the distance between genotypes in different relation types. P values were 
obtained using the Wilcoxon rank-sum test (two-sided). G Comparing the number of putative transmission events among different relation types. 
Odds ratios (OR) and p values were calculated using Fisher’s exact test (two-sided). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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located on plasmids, exhibited the highest potential for 
horizontal transfer. This aligns with reports indicating 
that Beta-lactams resistance genes are most frequently 
associated with horizontal gene transfer events [27]. 
These MGE-associated ARGs were predominantly found 
in the genomes of P. melaninogenica, P. intermedia, and 
C. sputigena. Aminoglycoside resistance ARGs were the 
next most associated, with 25.0% linked to MGEs, pri-
marily carried by S. pneumoniae (Fig. S7B).

The most widely distributed MGE-ARG pair was the 
MLS resistance genes mefA and msrD linked to the 
conjugative transposon Tn916 (Tn916-mefA-msrD), 
identified in 20 species across 5 genera, carried by 30 
unrelated individuals in 8 districts (Fig.  4D). The sec-
ond most prevalent MGE-ARG pair was the aminogly-
coside resistance genes aac(6’)-aph(2’’), preceded by a 
TnpA gene (TnpA -aac(6’)-aph(2’’)), found in nine spe-
cies across 8 genera, carried by 33 unrelated individu-
als in 11 districts. Notably, the S. pneumoniae genome 
in 20 samples harbored the TnpA-aac(6’)-aph(2’’) gene 
cluster. The distribution of this gene cluster was not 

correlated with age, suggesting that it is unlikely to 
be driven by antibiotic pressure after birth (Fig. S7C). 
Furthermore, we observed higher sequence similarity 
in regions adjacent to the Tn916-mefA-msrD or TnpA-
aac(6’)-aph(2’’) gene clusters between different species, 
which may be transferred along with conserved ARGs, 
compared to those without the MGE (Fig. 4E, Fig. S7D 
and E), suggesting MGE-mediated horizontal transfer 
of ARGs among species.

Besides, the distribution of MGEs and species together 
explained 82.0% of the variation in ARG composi-
tion. Specifically, MGE abundance accounted for 12.8% 
of the variation, while species composition explained 
18.1%. The interaction between these two factors con-
tributed to 51.1% of the variance (Variation Partitioning 
Analysis). These findings highlight a strong correlation 
among microorganisms, MGEs, and ARGs within the OP 
microbiome.

Additionally, we found that 154 out of 4827 (3.2%) 
ACCs annotated at the species level also carried VFs. 
However, none of these ACCs contained MGEs, 

Fig. 4 OP is a reservoir of antibiotic resistance genes with the potential for horizontal transfer. A Species annotation of ARG-carrying contigs 
(ACCs). Species contributing more than 30 ACCs of at least a type of ARG are shown. B Distribution of the ARGs within ACCs in opportunistic 
pathogens colonizing the upper respiratory tract. Species abundance distribution is shown on the right side of the figure. C Correlation 
between the proportion of mobile ACCs and the number of host species for different ARGs. ARGs detected in at least 100 ACCs are shown. D 
Illustrations of two ACCs that are associated with the highest numbers of microbial hosts. The upper part displays the structures of two ACCs, 
while the lower part displays the number of participants with these two ACCs in each species host. E Sequence similarity of the aac(6’)-aph(2’’) gene 
and its downstream 500 bp between different species in contigs with MGEs (upper) and without MGEs (lower). Gray lines represent the similarity 
between sequences in two different species (with 50 bp sliding windows used), the blue line indicates the mean of all gray lines, and the shadow 
represents the 95% confidence interval
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suggesting that VFs and ARGs are unlikely to be co-
transferred in the OP microbiome of healthy individuals.

Discussion
In this study, we profiled the oropharyngeal microbi-
ome at the species level and found that geography was 
the predominant factor correlating with its composition, 
consistent with previous studies on respiratory and other 
human microbial niches [25, 28]. The concentration of 
air pollutants, especially  PM10 and  NO2, which were 
correlated with geography, accounted for substantial 
geographic variation at both district level (tens of kilo-
meters apart) and sub-district level (several kilometers 
apart) scales. Among the 13 districts investigated, Han-
yang showed the most pronounced deviations. Taxa such 
as Schaalia odontolytica, Schaalia meyeri, and Leptotri-
chia sp. oral taxon 221, which were either enriched or 
depleted in Hanyang, were significantly correlated with 
 NO2 or  PM10 concentration. Notably, the genus Schaalia 
and Leptotrichia in the oropharynx have previously been 
linked to  NO2 levels [29]. Additionally, unmeasured fac-
tors like humidity and residential area greening rate may 
also contribute to geographic-related microbiome varia-
tions [30, 31]. Furthermore, the association between the 
OP microbiome and geography may reflect increased 
social interactions or exposure to shared environmental 
microbiomes within district [15].

Age explained 1.4% of the variation in the OP microbi-
ome and correlated with the abundance of certain oppor-
tunistic pathogens. S. pneumoniae and H. influenzae, 
both known to cause lower respiratory infections in chil-
dren [32] were more abundant in the OP microbiome of 
younger individuals. Conversely, N. meningitidis, N. gon-
orrhoeae, and P. gingivalis, causative agents for meningi-
tis, gonorrhea, and periodontitis, respectively, increased 
with age. This age-related shift may reflect changes in 
contact patterns, social behavior, infection history, and 
receptor numbers in the oropharyngeal epithelium over 
time [33, 34]. Colonization of these pathogens in the 
upper respiratory may increase the risk of invasive infec-
tions through hematogenous spread or proliferation from 
the site of colonization [8].

Human microbiomes could transfer through contact, 
shared environments, and the exchange of body fluids 
[35], making cohabitation a key factor influencing micro-
biome composition, as seen in gut and oral microbiomes 
[17]. Our study suggests that OP microbiome may also 
be transmitted between cohabitants, particularly among 
those with close relationships like spouses and siblings, 
supported by correlations in microbial abundance and 
genome similarity of the same species between cohab-
itants. Among OP species shared among cohabitants, 
16.7% were likely transmitted between cohabitants, lower 

than oral (32%) but higher than gut (12%) [17]. Interest-
ingly, the transmission rates of the same species in the 
OP and oral cavity were significantly correlated. Since 
these two sites are anatomically connected and share a 
large number of microorganisms, the transmission of the 
OP microbiome may be partially or primarily driven by 
the transmission of the oral microbiome through physi-
cal interactions, such as kissing and sharing utensils. 
However, OP microbiome transmission might also occur 
independently of oral microbiome transmission, as the 
former is more susceptible to airborne and environmen-
tal microorganisms. This raises an interesting avenue for 
exploring the transmission of the nasopharyngeal micro-
biome transmission, which is less likely to be influenced 
by the oral microbiome. Furthermore, we found no sig-
nificant difference in genetic distance between species 
in mother–child and father-child pairs, even for families 
with children younger than 5 years old, indicating no evi-
dence of vertical transmission of OP microorganisms, 
similar to oral but unlike gut microbiome transmission 
[17]. Additionally, although some VFs are associated with 
bacterial invasion and colonization [36], we found no sig-
nificant correlation between VF burden—defined as the 
average number of VFs per contig for each species—and 
species transmission rates (Spearman’s ρ = − 0.47, p = 
0.07). Further investigation with deeper sequencing cov-
erage is needed to clarify the link between specific VFs 
and bacterial transmission.

Meanwhile, shared environments, beyond direct con-
tact, may also influence strain sharing. A recent study 
on the Amboseli baboons found that baboons who never 
co-resided or overlapped in lifetime shared a similar pro-
portion of gut microbiota with closely grooming part-
ners. This was likely due to shared diets or exposure to 
seasonal environmental factors, such as the duration 
of the rainy season [37]. This emphasizes the impact 
of environmental factors on microbiome composition 
beyond social interactions. Similarly, our observation 
that non-cohabiting pairs in the same district exhibited 
higher strain-sharing rates and more similar microbial 
composition than those residing in different districts may 
be attributed to shared environmental exposures, such 
as air pollutants. Previous studies have identified shared 
microbes and ARGs between human airway samples and 
indoor or outdoor airborne particulate matter and dust 
[38, 39]. Future studies incorporating detailed environ-
mental sampling and longitudinal monitoring of human 
airways could better quantify the relative contributions of 
direct transmission and shared environmental exposure 
to microbiome similarity.

The transmission of the OP microbiome involved 
both commensals (e.g., N. subflava, P. melaninogenica) 
and opportunistic pathogens (F. nucleatum, T. denticola 
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and S. pneumoniae). These findings align with previ-
ous studies on household transmission of pathogens, 
such as S. pneumoniae carriage being influenced by 
having siblings and periodontal pathogens transmitted 
between spouses [40–42]. Given that the respiratory 
microbiome can influence susceptibility to infections 
and immune homeostasis [2], the transmission of the 
OP microbiome among cohabitants could affect the 
incidence and severity of respiratory diseases, making 
it an important factor in assessing disease risk.

Our study revealed that the human oropharynx serves 
as a reservoir for ARGs, similar to the gut and oral cav-
ity [21]. The ARG spectrum in the healthy population is 
similar to that observed in respiratory specimens from 
patients with COPD and infectious diseases, predomi-
nantly comprising ARGs for macrolides-lincosamides-
streptogramins (MLS), multi-drug, and beta-lactams 
antibiotics [43, 44]. This contrasts with the gut micro-
biome, which primarily harbors ARGs for tetracyclines, 
MLS, and beta-lactams antibiotics [21]. The difference 
likely reflects variations in microbial communities 
across different body sites and/or differences in anti-
biotic pressure [45]. Among common respiratory tract 
pathogens, S. pneumoniae harbored more ARGs than 
other species, conferring excess resistance to MLS and 
aminoglycoside antibiotics. This aligns with the high 
resistance rate of S. pneumoniae to erythromycin (an 
MLS antibiotic), reported at 97.0% in Hubei province 
(Wuhan is the capital of the province) [46]. Aminogly-
coside resistance, however, was not reported in gov-
ernmental surveillance, highlighting a need for further 
monitoring and clinical attention. Notably, ARGs in the 
OP microbiome may transfer between resident micro-
organisms, with 15.0% of ARG-carrying contigs show-
ing putative mobility (with MGEs located within 5000 
base pairs upstream or downstream of ARGs). This 
raises concerns that resistance genes in OP commensals 
could transfer to invading respiratory pathogens. We 
noted that the proportion of MGE-associated ACCs in 
the OP was lower than that reported in the human gut 
(19.6–36.2%) [47, 48], which may reflect more frequent 
horizontal gene transfer and stronger selective pressure 
from antibiotic exposure in the human gut [49].

The study has several limitations. First, the metadata 
obtained from the questionnaire was limited, leading 
to potential missing variables that could impact the 
composition and functional elements of the OP micro-
biome. For instance, the unrecorded history of antibi-
otic use might influence the abundance and diversity 
of microorganisms and ARGs. Second, the human oro-
pharyngeal samples contained a high number of human 
cells, resulting in relatively low microbial reads com-
pared to gut microbiome studies, which may result in 

the underrepresentation of low-abundance microor-
ganisms and functional elements.

Conclusions
In summary, our study provided a high-resolution profile 
of the human OP microbiome and its functional genes 
in a healthy population, identifying numerous demo-
graphic, environmental, and clinical factors associated 
with the OP microbiome. Our findings suggest that the 
OP microbiome, which is directly exposed to external 
environments, is influenced by external matters. Addi-
tionally, the OP microbiome can be transmitted between 
cohabitants, particularly those with close contact, and 
antibiotic resistance genes can transfer between different 
microorganisms, which may influence immune homeo-
stasis in the respiratory tract, susceptibility to infectious 
or non-infectious diseases, and effectiveness of antibiotic 
treatments.

Methods
Cohort design and sample collection
The study cohort, comprising 1046 participants, was part 
of a population-level survey of SARS-CoV- 2 antibodies 
in Wuhan, China on 14–15 April 2020 [50]. Inclusion 
criteria were those who had lived in Wuhan for at least 
14 days since December 1, 2019, and without any self-
report respiratory symptoms in the latest month. House-
holds with individuals whose sera tested positive for 
SARS-CoV- 2 antibodies were preferentially selected. The 
recruitment covered 69 subdistricts across 13 districts in 
Wuhan, China, with 289 participants having at least one 
cohabitant included in this study. All participants filled 
in a questionnaire including demographic, clinical, occu-
pational, residential address, and smoke status. Ambient 
air pollutants  (NO2,  PM1,  PM2.5, and  PM10) were assessed 
for each individual as the average concentration of each 
pollutant in the residing area over the past year before 
the sampling date, assessed at a 1 km × 1 km spatial 
resolution using the China High Air Pollutants datasets 
[51–54]. Oropharyngeal samples were collected from 
each participant at community health-care center using 
a flocked swab (MT0301, Yocon), by swabbing both sides 
of the palatal arch and posterior pharynx and then imme-
diately placed into viral transport medium and stored at 
− 80 °C until transported to the laboratory for processing.

DNA extractions and metagenomic sequencing
DNA was extracted using the chemagic™ 360 instrument 
(Revvity). Then, DNA libraries were constructed with 
DNA fragmentation, adapter ligation, PCR amplification, 
and purification by Celero™ EZ DNA-Seq Kit (TECAN). 
Libraries were sequenced on an Illumina NovaSeq 6000 
platform using the mode of 150-bp paired-end reads. To 
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control for contaminations introduced during the sample 
processing, 10 deionized water samples and 89 unused 
swabs were processed following the same protocol and 
were used as negative controls.

Taxonomic and functional profiling of metagenomic data
Raw metagenomes were processed with fastp (v0.20.0) 
[55], which involved removing adapters and ploy-G tails, 
trimming positions with quality < 15, removing low-
quality reads (mean quality < 25), and discarding reads 
shorter than 50 nt. Human reads were removed by map-
ping to a custom database that includes the human refer-
ence genome (GRCH38) and UNiVec sequences (version 
May 2020) by BowTie2 (v2.3.0, sensitive mode) [56]. 
The estimated coverage of nonhuman metagenome was 
assessed by Nonpareil 3 [57].

Species-level taxonomic profile was obtained by 
Kraken2 and Bracken (v2.1.2) [58] with default param-
eters and a custom database that consisted of human, 
virus, bacterium, archaea, and fungus genome sequences 
from the NCBI nucleotide database (version July 2021). 
To distinguish true species from potential contaminants, 
we assessed species contamination using the quantileTest 
function in the R package EnvStats (v2.7.0) [59]. Specifi-
cally, species whose 95 th percentile of abundance distri-
bution in OP samples was significantly greater than that 
in NCs were retained for further analysis. Library batch 
bias was corrected by ConQuR (v2.0) [60].

HUMAnN2 (v2.8.1) [61] was used to profile MetaCyc 
functional pathways with default settings. Quality-con-
trolled reads were also used to search for antibiotic resist-
ance genes (ARGs), virulence factors (VFs), and mobile 
genetics elements (MGEs) by aligning them to different 
databases using BWA-MEM (v0.7.10) [62]. Specifically, 
MEGARes (v2.0) [63], was used to identify ARGs. Genes 
that confer resistance by mutation were not considered. 
VFDB was used to identify VFs [64]. A collective custom 
MGE database was used to identify MGEs [65]. The align-
ment bam files were processed by SAMtools (v0.1.18) 
[66] to obtain sequencing coverage and depth of the gene. 
For samples with more than 1000 mappable reads, func-
tional genes with sequence coverage above 50% and sup-
ported by at least 10 reads were retained. The abundance 
of these functional genes was normalized by the number 
of the 16S rRNA gene reads to represent a “copy of ARG/
VF/MGE per copy of 16S rRNA gene” [67]. The number 
of 16S rRNA gene sequences per sample was obtained by 
METAXA2 (v2.0) [68].

Strain‑level profiling of the respiratory microbiome
The genotypes of species were profiled by StrainPhlAn 
(v.3.0.14) [26] using the default marker gene database, 

with parameters “-min_base_coverage 3” for sample2 
markers.py script, “-marker_in_n_samples 20 -sam-
ple_with_n_markers 20 –debug” for strainphlan script. 
The consensus sequences of all the marker genes were 
concatenated as a genotype (strain) of the species. To 
compare the genomic similarity of the same species 
between cohabiting pairs or non-cohabiting pairs, only 
genotypes with comparable regions exceeding 1000 bp 
were included. The pairwise genetic distance between 
genotypes was calculated by the dist.dna function in 
R packages ape (v.5.6.2)(model = “raw”, pairwise.dele-
tion = TRUE) [69]. The hamming distance is com-
puted as the number of mutations between pairs of 
genotypes divided by the length of the total comparable 
region. Phylogenies trees were constructed by RAxML 
(v8.2.12)(parameters: -p 1989 -m GTR CAT ) [70] using 
genotypes obtained from StrainPhlan, visualizing by R 
package ggtree (v3.2.1) [71].

Identifying strain transmission events among cohabitants
To determine the transmission events between indi-
viduals, a threshold of genetic distance is needed to 
define the same strain. Since different species have dif-
ferent mutation rates, thus we applied a species-specific 
genetic difference threshold to define a strain. For each 
species, the threshold was selected as the maximum 
genetic distance ensured that the probability of shar-
ing the same strain in cohabiting pairs was two times 
higher than that in non-cohabiting pairs, with sig-
nificance in Fisher’s exact test. The threshold ranged 
between 0.006 to 0.038 for different species, similar to 
that applied in previous studies [17]. In addition, Syn-
Tracker [72] was used to compare the genomic synteny 
of species between cohabitation pairs and non-cohab-
itation pairs, and also between putative transferred 
strains and non-transferred ones.

To test the statistical significance of the correlation in 
species abundance between cohabitation pairs, we cre-
ated a background distribution of species abundance 
correlation using unrelated individuals by randomly 
sampling 269 non-cohabitation pairs (the same num-
ber of cohabitation pairs) 1000 times and calculated the 
frequency of observing a correlation coefficient higher 
than that observed between cohabitants.

To test whether the genomes of shared species among 
cohabitants were more similar than those among non-
cohabitants, we created a background distribution of 
the proportion of the nearest strains from cohabitants, 
by randomly disrupting the household labels of samples 
1000 times, and calculated the frequency of observ-
ing a proportion higher than that observed between 
cohabitants.
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Analysis of the mobility potential of ARGs
Quality-controlled sequencing reads were assembled 
using megaHIT (v1.2.9) [73] by default parameters for 
each sample. ARG-carrying contigs (ACCs) were iden-
tified by mapping ARG reference sequences from the 
MEGARes database [63] to the assembled contigs using 
BLASTn (v2.7.1) [74], requiring identity percentage 
greater than 80% and coverage greater than 70%. Taxo-
nomic classification of ACCs was assigned using Kraken2 
(v2.1.2) [58]. To explore the mobility of ARGs, Mobile 
genetic elements (MGEs) on the ACCs were detected 
by aligning known MGEs reference sequences against 
ACCs by BLASTn (v2.7.1) [74], requiring identity per-
centage greater than 80% and coverage greater than 70%. 
The reference MGE sequences from the aforementioned 
custom MGE database [65] were created by retriev-
ing coding sequences for genes annotated as IS*, ISCR*, 
intI1, int2, istA*, istB*, qacEdelta, tniA*, tniB*, tnpA*, and 
Tn916 transposon from the NCBI nucleotide database 
and PlasmidFinder database. Notably, these references do 
not contain bacteriophage sequences. ACCs harboring 
an MGE located within 5 kb of an ARG were recognized 
as putative mobile ACCs. Besides, ACCs predicted to be 
located on plasmids by PlasFlow [75] (using default set-
tings) were also annotated as putative mobile ACCs.

Statistical analysis
The proportion of variance in microbiome composi-
tion explained by each host or environmental factor was 
accessed using distance-based RDA with Aitchison dis-
tance on the relative abundance of species and Horn-
Morisita distance on the MetaCyc functional pathway 
profile and normalized functional gene profiles, imple-
mented in the R package vegan [76]. Variation partition-
ing analysis, performed using the varpart function in the 
R package vegan, was used to estimate the contribution 
of district-associated factors to geographic variations 
in the microbiome. The associations between metadata 
features and microbial compositions (species, path-
way, ARG, VF) were assessed using a multivariate linear 
regression model implemented in MaAsLin2 (v1.8.0) 
[77], with all the host and environmental factors adjusted 
as covariates, except for  PM1,  PM2.5, district, and occu-
pation, to avoid multicollinearity. All statistical tests were 
followed by multiple-testing correction using the Benja-
mini–Hochberg method whenever applicable.
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